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1 Recalling some definitions

Definition 1.1. K-colouring

Given a graph G = (V, E) where V' denote the vertex set and F the edge set,a
k-colouring of G is a function ¢ : V' — {1,2,.....,k} such that if {z,y} € F then
w(x) # ¥(y). If such a colouring exists the graph is called k-colourable. Colouring
here is by default Vertex Colouring.

2 Chromatic Number and Chromatic polynomial

Definition 2.1. Chromatic Number
The Chromatic Number of a Graph G, written as x(G), is the minimum number
of colours need to label the vertices so that adjacent vertices gets different colours.
Note : Given a Graph, it is k-partite(can be dissolved into k disjoint independent
sets) if and only if it’s Chromatic Number is at most k.

Definition 2.2. Chromatic Polynom:ial
A Chromatic Polynomial denoted by Q¢(z) of a Graph G is a polynomial in z,
which counts the no of ways of colouring G with at most x colours.

3 Some basic results

3.1 x(G) is the minimum integer k such that Qg(k) # 0

Atlest k colour is required to label vertices of the Graph G. Hence Qg(k) has value
atleast 1.

19-1



3.2 x(G) > w(G), w(G) denoting the size of the maximum clique in G

If a graph contains a clique of size k, then at least k colors are required to color just
the clique. Thus, the chromatic number is at least k.

3.3 x(I,) =1, where I,, denotes an independent set of size n

An independent set can have all the vertices with same colour.

3.4 x(K,)=n, K, denotes clique of size n

K,, can be coloured in more than n ways.

3.5 @ (x)=2z2"

The no of ways of colouring n non-adjacent vertices is x for each vertex thus totalling

xn

3.6 Qg (x)=z(x—-1)(z—2)...(x —n+1).

All the vertices must have different colours. As a result, the first vertex has choice z,
the next have choice  — 1 and so on.

3.7 x(G) <A(G)+ 1, A(G) is the maximum degree in G.

One shows this by greedy colouring. One colors a vertex v, by atmost A(G)+ 1 colors
(1 for itself). If the next vertex v, is adjacent or non adjacent to vy, even then no of
coloring will remain A(G) + 1.

3.8 Xx(G) > [n/a(G)], a(G) denotes the size of maximum independent set.

Proof: -We require x(G) many colours; so lets partition the vertex set V into x(G)
many partitions, such that each partiton contains vertex with same colouring. As a
result,we have P,P,,....,P,(q) partitions. Therefore, total no of vertices:

x(G) x(G)
S IR <) alG) = x(G).a(G) =n

Therefore: x(G) > (n/a(G)) completing the proof.

3.9 x(G)=kiff G is k-partite.

Follows from the definition of k partite graphs: the graphs that can be divided into
k disjoint maximal independent sets.
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3.10 G is k-colourable iff GG is k-partite

K-partite, as a result can be divided into k disjoint independent sets and is k-
colourable.

Theorem 3.1. Two piece Theorem If G has two connected components G; and
(5, then

Qc(x) = Qa,(x)-Qcax)

Proof: This can be argued by basic product rule. Since G; and G5 are connected
components as a result these two are disjoint and exhausts to G. Thus one can choose
the no of ways to colour component G; by Q¢,(x) and component Gy by ¢, ways.
Since these two components are disjoint; colouring for each vertex of G; corresponds
to colouring of all the vertices of G5. Thus product form applies and completes the
proof.

4 Fundamental Reduction Theorem And its Application

Statement: Suppose F is an edge in a graph G connecting vertices {u,v}. G/E is
the reduced graph obtained by removing the edge E, making the endpoints to be non
adjacent. G.E is the graph obtained by contracting the vertices along the edge E;
thus reducing the vertex no by 1. Furthur assume the graph does not contain any
self loop. Then,

Qc(x) = Qg/e(x) — Qar(x)
Proof:

e Case 1: {u,v} is connected by a single edge E
In that scenario, Qg (x) can be dissociated into 2 parts : one with the Graph
having edge E removed, resulting in 2 non adjacent vertices, where each can be
coloured z? ways. And the 2nd part consists the contraction of {u,v} along the
edge FE, resulting in formation of 1 vertex contributing x, resulting in 2? — x

which is the chromatic polynomial of the original graph.

e Case 2: {u,v} is connected by more than 1 edge.
Here Qg /p(2)=Qc(x) due to the reason that the colouring of the edges {u,v}
is affected only by the adjacency of the two vertices. If edge F is removed,other
edges remains fixed, as a result no of ways of colouring remains unchanged.
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Facts to notice here :
e In the statement of the theorem, we are considering those graphs, that are
without loop. This can be explained by a simple example. Consider the above graph:
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Figure 1

e We have two notions regarding the reduction of the Graph. Figure 1 follows the
first notion. The notion is that if we have simple graph or multigraph we delete every
edges so as to make a change in the colouring of the endpoints of the concerned edge.

The above example leads to formation of one graph (G/FE) with vertices {u,v}
being non-adjacent and the other graph (G.E) reducing it to one vertex. Chromatic
polynomials for the respective graphs are x?> and z. Subtracting the two results

x(z — 1) which is equal to Qg(x).

’ Lo ~—

I3
Qe =&

Figure 2
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e For figure 2, the 2nd notion says that if we have a simple graph, the contraction
of the vertices {u,v} along the single edge F leads to formation of a self loop with a
single vertex u=v. Since we consider the colourability of a self loop to be zero, one
gets Qa/p(x) = x(x — 1), and equals to the chromatic polynomial of the graph G.

Theorem 4.1. Statement: Consider a graph G={V, E}, with |V|=n and |E|=m.
Let

Qc(x) = cp™ + ™t .. + oz +

. Then,
e The polynomial is monic. Coefficient of ™ i.e. ¢,=1
e Constant term of the polynomial, i.e. cy=0.
e ¢, 1| = m, the no of edges, and the coefficients alternate in sign.

Proof (Induction Aprroach:)

We will proceed by induction on no of edges.

Base Case: m =0

e Note that Q¢ (0) = 0. Therefore, cg=0. Now m = 0 implies G=1,,.

Therefore, Q¢ () = 2™ implying ¢, = 1,¢o = 0 and ¢,_1 = m = 0. Done.

We impose the induction hypothesis and assume that the statement is true for all
graphs with fewer than m edges (Strong form of induction). Let M be one of the
edges of G. By the Fundamental Reduction Theorem,

Qc(x) = Qg/e(x) — Qe.e(x)

e Now, since G/E has m — 1 edges and n vertices, by the induction hypothesis,
Q¢/e(x) is monic of degree n. Since G.E has m — 1 edges and only n — 1 vertices,
Qc.r(z) is monic of degree n — 1.

Upon subtraction of these polynomials, we see that there is no term in Qg g(x)
that can remove the z,, term in Q¢ /p(x); so Q¢(x) will be monic of degree n.

e By induction hypothesis, assume coefficients alternate in sign and penultimate
coefficient term = no of edges is true for all graphs on n vertices with fewer than
m — 1 edges. Therefore

Qa/ep(r) =" — (m — Da™ bt 4 ay_02™ % — @y 4

Qo) =2""1—(m— 12" 2+ by_32™ > — by_g2™ 4+ ...

Upon Subtracting we get:
Qalx) = 2" —ma™ ' 4 (ap_o + (m — 1))2" 2 — (ap_3 + bp_z)z" > + ...

Thus the signs alternate and none of the coefficients are zero. And ¢, _; = m is true
for all graphs with n vertices and m edges.Thus completes the proof.

Proof (Principle of Inclusion and exclusion):
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Let Py, P, ...P,, be the properties where P; denotes the set of way of vertex colour-
ing, such that the two vertices joining Edge ¢ have the same colour.

Need to find cardinality of the following event: Pf N Py N PyN.....N P,

Fix the no of colours to be . By the principle of inclusion and exclusion:

N(P{,P5, ... Pg) = N= Y N(P)+ Y N(PP)+..+(=1)"N(Py, Py, ..., Py)

1<i<m 1<i<<m

Now, N=xz", since one colours every vertex in x possible ways.
N(P;) consists of one edge ¢ such that it’s endpoints are coloured the same. For
this case the two vertices are considered paired and can be coloured in x ways. The

rest n — 2 vertices can be coloured in "' ways. Therefore, N(P;) = z.2" 2 = z"!

So,
Z N(P) = m.a™!
1<i<m
Similarly, for the event P, N P; we have two edges with their vertices having same
colouring; which is possible for two cases,

e (Case 1 : The two edges E; and E; are joined by a common vertex. In that case
three vertices will have the same colouring joined by two edges £; and F;. Thus no
of ways to colour this 3 vertices is x and the rest n — 3 vertices can be coloured in
"3 ways. Total no of ways to do this is 2”2 ways.

e (Case 2 : The two edges are disjoined. Thus effectively two vertices in pair are
needed to be coloured same, which can be done in 22 ways. Rest vertices are coloured
in "% ways. Total no of ways will be 2"~2 Thus

> Nep)- ¥ o
1<i<j<m 1<i<j<m

which is a positive term since one applies the principle of counting here.

Therefore
N(Pf,P§, ... P5) = Qa(x) = 2" —ma™ ' + a, 02" 2 + ... + (=1)"ax

where aq,as, ....,a,_o denotes the counts which are positive integers, which is the
required expression of the chromatic polynomial. Proved .

5 Map Colouring and Colour Theorems

Result 5.1. Perhaps the most famous problem in graph theory concerns map color-
ing: Given a map of some countries, how many colors are required to color the map
so that countries sharing a border get different colors? It was long conjectured that
any map could be colored with four colors, and this was finally proved in 1976.

Recall from Lecture 18 (Planar Graphs), we discussed about duality of graphs
where we stated and proved a theorem. Let’s recall the theorem.
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Theorem 5.2. A graph G is planar iff its dual G* is planar. (We defined the dual
graph G* of a plane graph G as a graph whose vertices correspond to the faces of G.)

We are practically using the idea of the above stated theorem in the following
example:
Here is an example of a small map, colored with four colors:

Figure 3: Map Colouring

Typically this problem is turned into a graph theory problem. Suppose we add to
each country a capital, and connect capitals across common boundaries. Coloring the
capitals so that no two connected capitals share a color is clearly the same problem.
For the previous map:

Figure 4: Vertex Colouring

Theorem 5.3. The Six Colour Theorem (Statement): For a connected planar
simple graph G, the vertices in G can be coloured with 6 or fewer colours for a good
6 (or less) colouring of G, that is, a function f exists f 'V — {1,2,.....k} with
1 <k <6, such that if {z,y} € E,then f(z) # f(y).

Proof: Let S(n) be the statement that for a connected planar simple graph G, the
vertices in G can be coloured with 6 or fewer colours for a good colouring of G.

Induction Base Step : For 1 < n < 6, this is trivially true. A graph on 1 vertex
can easily be coloured with just 1 colour, while a graph with 6 vertices can easily be
coloured with just 6 colours for a good colouring (recall that we restrict ourselves to
simple graphs).

Induction Step : Suppose that for all & > 2, S(k — 1) is true. That is, for all
connected planar simple graphs on k1 vertices, we can obtain a good colouring of the
vertices in G with 6 or fewer colours. We want to verify that S(k) is true (that for
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all connected planar simple graphs on k vertices, we can obtain a good colour of the
vertices in G with 6 or fewer colours still).

Now let G be a connected planar simple graph on k vertices. Recall that a
connected planar simple graph GG contains a vertex of degree 5 or less. Suppose the

vertex v has deg(v)=5.

Figure 5

Now suppose that we remove vertex v and all of the edges incident with v. This
graph now has less than £ vertices, and by our induction hypothesis, we know this
resulting graph can be coloured with 6 or fewer colours.

S
WA

Figure 6

Adding vertex v back, we know that the neighbourhood of v contains 5 members.
Hence if we use the 6th colour for vertex v, our proof is complete.

Hence S(k1) implies S(k). By the principle of mathematical induction, for n > 1,
S(n) is true.
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Figure 7

Theorem 5.4. The Five Colour Theorem (Statement) : Every planar graph
can be 5-colored.

Proof We will again do this by induction on the number of vertices.

Base Case: For 1 < n < 5, this is trivially true.The simplest connected planar
graph consists of a single vertex. Pick a color for that vertex. So We are done.

Induction Hypothesis: Assume k£ > 1, and assume that every planar graph with
k—1 or fewer vertices can be 5-colored. Now consider a planar graph with k& vertices.
From above, we know that the graph has a vertex of degree 5 or fewer. Remove that
vertex (and all edges connected to it). By the induction hypothesis, we can 5-color
the remaining graph. Put the vertex (and edges) back in. We have a graph with
every vertex colored (without conflicts) except for the one.

If the vertex has degree less than 5, or if it has degree 5 and only 4 or fewer colors
are used for vertices connected to it, we can pick an available color for it, and we are
done.

If the vertex has degree 5, and all 5 colors are connected to it, we have a little
more work to do. In this case, using numbers 1 through 5 to represent colors, we
label the vertices adjacent to the special (degree 5) vertex 1 through 5 (in order).

And one can show this will leave color 1 available to color the special vertex,and
we are done.

On the other hand, if the vertices colored 1 and 3 are connected via a path in the
subgraph, we do the same subgraph process with vertices colored 2 and 4 adjacent to
the special vertex and complete the proof.

Thus, we will be able to color the entire planar graph with 5 colors, and the
induction is done.

Theorem 5.5. The Four Colour Theorem (Statement): Every planar graph can
be 4-colored
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It turns out that it is actually a theorem that 4 colors are enough for any planar
graph . The proof of that fact is significantly more difficult, and has only been done
with the aid of exhaustive computer analysis of many special cases.
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