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18.1 Introduction

Three sworn enemies A,B,C live in houses in the woods. We must cut paths so that
each has a path to each of three utilities, which can be considered gas, water and
electricity. In order to avoid confrontations, we don’t want any of the paths to cross.
Can this be done? This asks whether K3,3 can be drawn in the plane without edge
crossings; which we will proof cannot be done.

In this following section, we shall be studying this question of whether a graph
can be drawn in the plane without edges crossing. In particular, we shall answer the
houses-and-utilities problem.

Definition 18.1 (Planar Graph). A graph is called planar if it can be drawn on a
plane ( with vertices as points and edges as continuous curves) such that no two edges
cross each other.

Such a drawing is called a “Planar Embedding” of the graph.

Example.(i): The following graph G is a planar graph.

Fig. 18.1. Planar Graph G
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Example.(ii): The following two graphs both are K4 but the first one is a
non-planar embedding while the second one is planar embedding of K4.

Fig 18.2. Example of graph in both planar and nonplanar embedding
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Example.(iii): The following graphs are clearly two non-planar graphs.

Fig.18.3. Two nonplanar graphs

Consider the two graphs in Example.(iii). The two given figures are non-planar
embedding of these two graphs, but can one draw planar embedding of them? In
fact, there exists no planar embedding of them. To prove that there exists a planar
embedding it is sufficient to provide with a planar embedded figure, though it is a
little more complicated to argue that there exists no planar embedded configuration.
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18.2 Kuratowski’s Two Graphs

The complete graph K5 and the complete bipartite graph K3,3 are called
Kuratowski’s graphs, after the polish mathematician Kazimierz Kuratowski, who
found that K5 and K3,3 are nonplanar.
To prove that these two graphs cannot be drawn in a plane, we shall essentially try
to do the same and eventually end up getting two intersecting edges. In the
procedure, we use an intuitive yet a topologically significant theorem, namely,
Jordan Curve Theorem.

Theorem 18.2. (Jordan Curve Theorem).
(i) Any closed non-self-intersecting continuous curve J partitions the plane into 3
parts namely, interior of J (intJ), exterior of J (extJ) and J .

(ii) If J is a closed non-self-intersecting continuous curve, s ∈ intJ and t ∈ extJ ,
then any continuous curve J ′ from s to t contains a point of J i.e. J ′ intersects J .

Fig.18.4. Jordan Curve Theorem

Since, its proof uses many topological aspects, we skip the proof here. But, the idea
of this theorem will be used in the next two proofs. Let us move on to the theorems
regarding the nonplanarity of the Kuratowski’s graphs.

Theorem 18.3. The complete graph K5 with five vertices is nonplanar.

Proof. Let the five vertices in the complete graph be named v1, v2, v3, v4, v5. Since
in a complete graph every vertex is joined to every other vertex by means of an
edge, there is a cycle v1v2v3v4v5v1 that is a pentagon. This pentagon divides the
plane of the paper in two regions, one inside and the other outside, Figure 18.5(a).
Since vertex v1 is to be connected to v3 by means of an edge,this edge may be drawn
inside or outside the pentagon ( without intersecting the five edges drawn previously
). Suppose we choose to draw the line from v1 to v3 inside the pentagon, Figure
18.5(b). In case we choose outside, we end with the same argument. Now we have
to draw an edge from v2 to v4 and another from v2 to v5. Since neither of these
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edges can be drawn inside the pentagon without crossing over the edge already
drawn, we draw both these edges outside the pentagon, Figure 18.5(c).The edge
connecting v3 and v5 cannot be drawn outside the pentagon without crossing the
edge between v2 and v4. Therefore v3 and v5 have to be connected with an edge
inside the pentagon, Figure 18.5(d).

Fig. 18.5. Drawing K5

Now,we have to draw an edge between v1 and v4 and this cannot be placed inside or
outside the pentagon without a crossover. Thus the graph cannot be embedded in a
plane.

�

Theorem 18.4. The complete bipartite graph K3,3 is nonplanar.

Proof. The complete bipartite graph has six vertices and nine edges. Let the
vertices be u1, u2, u3, v1, v2, v3. We have edges from every ui to each vi, 1 ≤ i ≤ 3.
First we take the edges from u1 to each of v1, v2 and v3. Then we take the edges
between u2 to each v1, v2 and v3, Figure 18.6(a).

18-5



Fig. 18.6. Drawing K3,3

Thus we get three regions namely I, II and III. Finally we have to draw the edges
between u3 to each v1, v2 and v3. We can draw the edge between u3 and v3 inside
the region II without any crossover, Figure 18.6(b). But the edges between u3 and
v1, and u3 and v2 drawn in any region have a crossover with the previous edges.
Thus the graph cannot be embedded in a plane. Hence K3,3 is nonplanar.

�

We observe that the two graphs K5 and K3,3 have the following common properties.

1. Both are regular i.e. all the vertices have same degree.

2. Both are nonplanar.

3.Removal of one edge or a vertex makes each a planar graph.

4.K5 is a nonplanar graph with the smallest number of vertices, and K3,3 is the
nonplanar graph with smallest number of edges.

Thus both are the simplest nonplanar graphs.

18.3 Faces or Regions

Definition 18.5. An open set in the plane is a set U ⊆ R2 such that for every
p ∈ U , all points within some small distance from p belong to U . A region is an
open set U that contains a polygonal u, v-curve for for every pair u, v ∈ U . The
faces of a plane graph are the maximal regions of the plane that contain no point
used in the embedding.
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A plane representation of a graph divides the plane into regions ( also called
windows, faces or meshes ). A region is characterised by the set of edges ( or the set
of vertices ) forming its boundary. We note that a region is not defined in a
nonplanar graph, or even in a planar graph not embedded in a plane. Thus a region
is a property of the specific plane representation of a graph and not an abstract
graph.

Fig. 18.7. Faces or Regions of a Graph

18.3.1 Dual Graphs

Definition 18.6. The dual graph G∗ of a plane graph G is a graph whose vertices
correspond to the faces of G. The edges of G∗ correspond to the edges of G as
follows: if e is an edge of G with face X on one side and face Y on the other side,
then the endpoints of the dual edge e∗ ∈ E(G∗) are the vertices x, y of G∗ that
represent the faces of X, Y of G. The order in the plane of the edges incident to
x ∈ V (G∗) is the order of the edges bounding the face X of G in a walk around its
boundary.

For example, consider Figure 18.8.

Fig. 18.8. Dual Graphs

Remark 18.7. Note that, dual of dual of a graph G is G itself i.e. (G∗)∗ = G.

Theorem 18.8. A graph G is planar iff its dual G∗ is planar.
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Proof. Since, we have that (G∗)∗ = G, it suffices to prove that G∗ would be planar
whenever G is planar. For the reverse direction, the exact same proof would hold as
given G∗ is planar, (G∗)∗ which is G would be planar. Let us prove: The dual G∗ of
a plane graph is planar.
Let G be a planar graph and let G∗ be the dual of G. The following construction of
G∗ essentially proves our claim.
Place each vertex f ∗k of G∗ inside the corresponding fk of G. If the edge ei lies on
the boundary of two regions fj and fk of G, join the two vertices f ∗j and f ∗k by the
edge e∗i , drawing so that it crosses the edge e exactly once and crosses no other edge
of G (Fig. 18.9).

Fig. 18.9. Drawing Dual Graph

�

Remark 18.9. Clearly, there is one-one correspondence between the edges of
planar graph G and its dual G∗ with one edge of G∗ intersecting one edge of G.

1. An edge forming a self-loop in G gives a pendant edge in G∗ (An edge incident on
a vertex of degree 1).

2. A pendant edge in G gives a self-loop in G∗.

3. Edges that are in series in G produce parallel edges in G∗.

4. Parallel edges in G produce edges in series in G∗.
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5. The number of edges forming the boundary of a region fi in G is equal to the
degree of the corresponding vertex f ∗i in G∗.

6.Let n,m, f denote the number of vertices, edges and regions of a connected plane
graph G and n∗,m∗, f ∗ are the same of the dual graph G∗.Then,
n∗ = f,m∗ = m, f ∗ = n.

18.3.2 Euler’s Formula

Euler’s formula (n− e + f = 2) is the basic counting tool relating vertices, edges,
and faces in planar graphs.

Theorem 18.10. If a connected plane graph G has exactly n vertices, e edges, and
f faces, then n− e + f = 2.

Proof. We use induction on n, number of vertices.

Basis step(n = 1): G is a “bouquet” of loops, each a closed curve in the embedding.
If e = 0, then, f = 1, and the formula holds. Each added loop passes through a face
and cuts it into two faces (by the Jordan Curve Theorem). This augments the edge
count and the face count each by 1. Thus the formula holds when n = 1 for any
number of edges.

Induction step(n > 1): Since G is connected, we can find an edge that is not a loop.
When we contract such an edge, we obtain a plane graph G′ with n′ vertices, e′

edges, and f ′ faces. The contraction does not change the number of faces (we
merely shorten the boundaries), but it reduces number of edges and vertices by 1, so
n′ = n− 1, e′ = e− 1 and f ′ = f . Applying the induction hypothesis yields

n− e + f = n′ + 1− (e′ + 1) + f ′ = n′ − e′ + f ′ = 2.

Fig. 18.10

�

Remark 18.11. 1. By Euler’s formula, all planar embeddings of a connected graph
G have the same number of faces. Although the dual may depend on the embedding
chosen for G, the number of vertices in the dual does not.

2. Euler’s formula as stated fails for disconnected graphs. If a plane graph G has k
components, then adding k − 1 edges to G yields a connected graph without
changing the number of faces. Hence Euler’s formula generalizes for plane graphs
with k components as n− e + f = k + 1.
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Euler’s formula has many applications, particularly for simple plane graphs, where
all faces have length at least 3.

Theorem 18.12. If G is a simple planar graph with at least three vertices, then
e(G) ≤ 3n(G)− 6. If G is also triangle-free, then e(G) ≤ 2n(G)− 4.

Proof. Suppose, we consider the number of edges surrounding a face. If we sum over
these numbers, we count each edge twice since it is used to surround two faces.

Thus we get that,
f∑

j=1

fj = 2e, where {fj} are the list of face lengths. Now, every

face boundary in a simple graph contains at least three edges, implying that fj ≥ 3

for all j. Hence, we get 2e =
f∑

j=1

fj ≥ 3f .

Also, from Euler’s formula we have n− e + f = 2 =⇒ f = 2 + e− n. Putting it in
the inequality, 2e ≥ 3f = 3(2 + e− n) =⇒ −e ≥ −3n + 6 =⇒ e ≤ 3n− 6.
When the graph is triangle free, each face length is at least 4. In that case, we have,
2e ≥ 4f =⇒ 2e ≥ 4(2 + e− n) =⇒ −2e ≥ −4n + 8 =⇒ e ≥ 2n− 4. �

Remark 18.13. We have proved nonplanarity of K5 and K3,3 using Jordan Curve
Theorem. The same can be proved from the last theorem as well. Let us recall the
image of the graphs first.

Fig. 18.11. K5

Consider K5. We have n = 5, e = 10. Therefore, e = 10 > 9 = 3n− 6. So, K5

cannot be planar.
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Fig. 18.12. K3,3

Consider K3,3. Note that it is triangle-free and here, n = 6, e = 9. Therefore,
e = 9 > 8 = 2n− 4. So, K3,3 cannot be planar too. These two graphs have too
many edges to be planar.

18.4 Kuratowski’s Theorem

We have seen that K3,3 and K5 are not planar. Clearly, a graph is not planar if it
contains either of these two graphs as a subgraph. Surprisingly, all nonplanar
graphs must contain a subgraph that can be obtained from K3,3 or K5 using certain
permitted operations.
If a graph is planar, so will be any graph obtained by removing an edge {u, v} and
adding a new vertex w together with edges {u,w} and {w, v}. Such an operation is
called an elementary subdivision. The graphs G1 = (V1, E1) and G2 = (V2, E2)
are called homeomorphic if they can be obtained from the same graph by a
sequence of elementary subdivisions. Figure 16.7 gives some examples of
homeomorphic graphs.

Fig. 18.13. Homeomorphic Graphs

Kazimierz Kuratowski established the following theorem which characterizes planar
graphs using the concept of graph homeomorphism.

Theorem 18.14. A graph is nonplanar iff it contains a subgraph
homeomorphic to K3,3 or K5.
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The proof of the above theorem is too detail and complex to be included here. The
proof is done in many standard textbooks and can be found going to this link.
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https://drive.google.com/file/d/1pYqlHuhhmXSBp8EaCvLZCO2Ru8--hEdL/view?usp=sharing

	Introduction
	Kuratowski's Two Graphs
	Faces or Regions
	Dual Graphs
	Euler's Formula

	Kuratowski's Theorem

