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17.1 Introduction

In this lecture we would emphasis on the hierarchical relationships be-
tween the individual elements or nodes of a graph. We develop discrete
structure, called trees which can model these relationships. One might
be interested in finding the shortest point between two vertices in the
given graph. In these class of ‘shortest distance’ problems, the abstract
essence of hierarchy is carried in the ‘length’ of path.

Trees find its application as early as the 1850s when the English
mathematician Arthur Cayley tried to enumerate the structural iso-
mers of alkane. Contemporarily, trees are used extensively in computer
science. From locating particular element in a list to developing win-
ning strategies in chess to analyze syntactic structure of sentences, trees
have utilization in a wide variety of algorithm.

17.2 Acyclic Graphs and Trees

Definition 17.2.1. A graph G=(V,E) is acyclic if it has no cycles.

Linguistically, trees suggest branching out from a root and never
completing a cycle. A same quintessence is carried in the formal defi-
nition.
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Figure 1: Acyclic graphs

Definition 17.2.2. A tree is a connected acyclic graph.

Definition 17.2.3. In a tree, a vertex with degree 1 is called a pendent
vertex or a leaf.

Figure 2: Tree

Figure 2 is a tree because there is no isolated vertex.It is connected
acyclic graph. Further note that vertices a,b,d,e each have degree one,
hence each of these vertices are pendent vertex.

In questions such as deciding weather a given graph is a tree or
otherwise, the generic definition as above may prove too hefty. It turns
out that trees have many equivalent characterization, any of which
could be used to define a tree. Before moving on to these equivalent
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definitions we prove that ‘deletion a leaf from a tree produces a smaller
tree’.

Theorem 17.2.4. Every tree with at least two vertices has at least two
leaves. Deleting a leaf from a tree with n vertices produces a tree with
n-1 vertices.

Proof. A connected graph with at least two vertices has an edge. In an
acyclic graph, an endpoint of maximal non-trivial path has no neigh-
bour other than its neighbour on the path. Hence, the endpoint of such
a path is a leaf. This proves the first statement of the lemma.

Let v be one of leaf of a tree G and let G′=G -v. We also remove the
now isolated vertex v from G′. A vertex of degree 1 belongs to no path
connecting two other vertices. Therefore, for u,w εV (G′) then every
u-w path in G is also in G′. Hence G′ is connected. Since deleting a
vertex cannot create a cycle, G′ also is acyclic. Together we have that
G′ is a tree with n-1 vertices.

�

17.3 Characteristic properties of Trees

We are now ready to take up equivalent definitions of trees. Our proofs
for equivalence uses induction, prior result and other common prov
technique.
Theorem 13.3.1 The following statements are equivalent:
(a) G is a connected acylic graph with n vertices.
(b) G is a connected graph with n vertices and n-1 edges.
(c) G is an acyclic graph with n vertices and n-1 edges.
(d) There is exactly one u-v path between any two different vertices u
and v of G.

Proof. We note that the equivalence of first three statement is same
as establishing that any two of {connected, acylic, n-1 edges} together
imply the third.

(a)⇒ {(b),(c)}
This is same as proving that (acylic,connected) together imply n-1
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edges.
We use induction on n. For n = 1 , a graph with 1 vertex is triv-
ially acylic and connected. Also it has no edge. For n > 1 suppose
the implication holds for less than n vertices. For a n-verticed acyclic
connected graph G, Theorem 13.2.4 provides provides a leaf and states
that G′=G - v (also removing vertex v) is connected acyclic. The in-
duction hypothesis states that G′ has n− 2 edges. Now in G, only one
edge is incident on v. Thus moving from G′ to G increases only one
edge. Hence, we conclude G has n− 1 edges.

(b)⇒{(a),(c)} equivalently (connected, n− 1 edges) together imply
acyclic.
Delete edges one by one until the resulting graph G′ is acyclic. Now G′

is a acyclic connected graph, the previous paragraph establishes that
it has n− 1 edges. But G has n− 1 edges too. So G′ can be obtained
from G without removing any edge from G , thus G itself is acylic.

(c)⇒{(a),(b)} equivalently (acylic, n− 1 edges) together imply con-
nected.
Let G1, G2, ...Gk be components of G. Since, every vertex appears in one
component

∑k
i=0 (n(Gi)) = n . Since G has no cycles, each component

satisfies (a). Thus for each component e(Gi) = n(Gi) − 1. Summing
over edges we get e(G) = n − k. But e(G) = n − 1. and hence, k = 1
or there is only one component in G or G is connected.

(a)⇒(d) . Since G is connected each pair of vertices u,v is connected
by a path. If some pair is connected by two distinct path, we can choose
the shortest pair P,Q of distinct path with same endpoint. This implies
P ∪ Q is a cycle, which contradicts the hypothesis of (a). Thus there
is a unique path connecting given two vertices u,v.

(d)⇒(a) if for pair u, v ∈ V (G) there exist a path, then G is
connected. If we suppose that G is cyclic then there exist more than
one u − v path for some u, v ∈ V (G). However this contradicts the
hypothesis of d. thus G is acylic too. �
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17.4 Distance

In the introductory paragraph we hinted towards solving ‘minimum
distance’ problems with the use of trees. Having equipped with the
tools developed above, we begin exploration in this direction.

Definition 17.4.1. Given a graph G=(V,E). With every pair of ver-
tices (u, v), {u, v} ∈ V (G) we associate d(u,v) which is defined as
minimum path-length between u and v. The path-length of path is the
number of edges along that path.

Note that the concept of distances doesn’t limit to connected graphs.
If u,v ∈ V (G) for some graph G, d(u, v) is set to infinity in case u and
v are not connected.

Figure 3

In Figure 3, all vertices adjacent to each other have d(.,.)=1.
d(a,c)=2 (a-b-c) d(b,e)=2 (b-c-e) etc.
d(a,e)=3 (a-b-c-e) d(a,h)=3 (a-b-c-h) etc.

Theorem 17.4.2. d(u,v) is a metric.

Proof. To prove that lemma we need to establish:
(i)d(u, v) ≥ 0 ,equality prevails only if u=v;
(ii)d(u, v) = d(v, u);
(iii)d(u,w) + d(w, v) ≥ d(u, v).

The validity of (i) is trivial. Since we are working under un-directed
graphs, (ii) follows.
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Let P be the path of minimum path-length between u,v. If P passes
through w then equality prevails. In case P doesn’t pass through w
then we need to show that d(u, v) is smaller. We suppose for the sake
of contradiction that d(u, v) > d(u,w) + d(w, v). This shows that the
length of minimum path P between u and v, is larger than the length
of path u−v path passing through w. This violates that P is minimum
path-length. Hence, d(u, v) ≤ d(u,w) + d(w, v) �

We next prove an important result which provides an upper bond
on sum of minimum path-lengths from a fixed vertex to all other ver-
tices. The puissance of the result can be realized in computer science
where complexity of algorithm incorporating tree searches need to be
adjudged.

Theorem 17.4.3. Let u be any fixed vertex in a tree T with n vertices.
Then

∑
v∈ T d(u, v) ≤

(
n
2

)
Proof. We proof the result using strong induction principle. For the
base case n = 2. This has only one edge, also

(
2
2

)
= 1 ; thus LHS and

RHS match.
We assume the result holds for less than n vertices.
Now consider a tree T with n many vertices. We fix the vertex u. Let
deg(u) = k; consider the graph G obtained by removing this vertex u
and all edges ending in u. Then G has n-1 vertices.

Claim: G has k components.
Pf: The tree T is connected and components of G are isolated from each
other; thus from each component there must be vertex which shares a
common edge with u. It follows that number of components are same
as number of edges incident on u which is deg(u) = k.

The k components of G are G1, G2, ....Gk. In each component ∃
unique vertices v1, v2, ....vk which share an edge with u. Let ni denote
number of vertices in Gi. Consider G1. ∀v ε G1

d(u, v) ≤ d(u, v1) + d(v1, v)∑
v∈G1

d(u, v) ≤
∑
v∈G1

d(u, v1) +
∑
v∈G1

d(v1, v)
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Figure 4: Proof demonstration

Since u and v1 are adjacent, the first term on RHS equals n1. Each
of the components of G are connected. Moreover since T is acyclic, so
are the individual components of G. Thus each component of G is a
tree with less than n vertex. Principle of strong induction applies and
implies

∑
v∈G1

d(v1, v) ≤
(
n1

2

)
. We do this for all k components and sum

up the results.

k∑
i=1

∑
v∈Gi

d(u, v) ≤
k∑

i=1

ni +
k∑

i=1

(
ni
2

)

=⇒
∑
v∈T

d(u, v) ≤ (n− 1) +

(
n− 1

2

)
=

(
n

2

)
And hence, the result stands proved!

�
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17.5 Rooted Trees

In some situations we may be interested in considering one of the ver-
tices of trees as our node. Once we fix a node, we can not only arrange
other vertices in order of their distance from this fixed node but also
introduce essence of direction to each edge as follows: Because there
is a unique path from the root to each vertex of the graph(Theorem
13.3.1 above), we direct each edge away from the root. Thus, a tree
together with its root produces a directed graph called a rooted tree.

Definition 17.5.1. A rooted tree is a tree where one vertex is taken
as root and vertices are arranged according to their distance from the
root.

We can change an un-rooted tree into a rooted tree by choosing
any vertex as the root. Note that different choices of the root produce
different rooted trees.

Figure 5: Figure on left is given un-rooted tree T, the middle figure made with
designating vertex a as root, and rightmost figure is made by designating c as root

Note that in a rooted tree all the vertices in first generation as at
one unit path-length from the root node. All the vertices in second
generation are at two unit path-length from root node and so on.

The terminology for trees has botanical and genealogical origins.
Suppose that T is a rooted tree.If v is a vertex in T other than the
root, the parent of v is the unique vertex u such that there is a di-
rected edge from u to v. Bearing to the familial similarity we can define
similar relationships between the vertices of a rooted tree.
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When u is the parent of v, v is called a child of u.
Vertices with the same parent are called siblings.
The ancestors of a vertex other than the root are the vertices in

the path from the root to this vertex, excluding the vertex itself and
including the root.

The descendants of a vertex v are those vertices that have v as an
ancestor.

A vertex of a rooted tree is called a leaf if it has no children.

In the discussion so far, we haven’t yet discussed the concept when
the children are chronologically or otherwise ordered. Familial trees
can be drawn in a manner where in a given generation the youngest
child is to the left extreme and the oldest child (of same generation) is
to the right extreme. Borrowing this abstraction of time or weightage to
different nodes of same generation, we introduce Ordered Rooted trees.

Definition 17.5.2. An Ordered Rooted tree is a rooted tree where
the children of each internal vertex are ordered.

Ordered rooted trees are drawn so that the children of each vertex
are shown in order from left to right.
We call a tree as binary tree if each vertex has no more than two
children. In an ordered binary tree (often referred as binary tree itself)
the first child is called the left child and the second child is called the
right child.

Problem: Count the number of ordered binary trees having n ver-
tices.

Solution: We try to approach the question bearing in mind the
recursive nature of trees. Choose any one of the n vertices, fix it as root.
Now, we are left with n-1 vertices. Fix an integer k s.t. 0 ≤ k ≤ n− 1.
Now, we move k-many points to the left the rest n-1-k many points
to the right.Let τn denote number of such ordered binary trees with n

vertices. The number of ordered binary trees (having n vertices) with
k-many vertices to left is given by τk τn−1−k
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Different choices of k would give different tree structure ( as the tree
is ordered). So, we need to sum over all such choices of k. Hence,

τn =
n−1∑
k=0

τk τn−k

The above can be solved by the method of generating functions. Re-
calling from earlier chapter on ‘Generating functions’, we deduce τn is
the nth Catalan number.

τn =

(
2n
n

)
n+ 1

�

We next, present a similar problem on cardinality of the set of la-
beled trees with n vertices. The term labeled is used to highlight that
vertices of graph are distinguishable.

For example, in the figure below had the labels not been present, all
three graphs would have represented the same structure. However, as
the vertices are labeled; each graph represents a different connectivity
structure.

Figure 6: Three distinct labeled graphs

The result on number of labeled trees with n vertices is known as
Cayley’s theorem after Arthur Cayley, British erudition who pro-
posed it.

Theorem 17.5.3. Number of labeled tree with n vertices is nn−2.

Proof. We present a bijective proof, which establishes a bijection be-
tween set of trees with vertex set S={1,2,....n} and the set Sn−2.

Here, Sn−2 is the set of sequences of length n-2 taking entries from
the set S. Since |S| = n, there are exactly nn−2 ways to form sequences
of length n− 2 which take values from the set S. Hence, |Sn−2| = nn−2.
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Part 1: One-one map: Trees→ Sn−2

The map is defined by algorithm commonly known as Prufer’s code.
Given a tree T we need to find f(T ) = (a1, a2, ....an−2) where each
ai ∈ S.

At stage i we find the leaf with minimum label, add the neighbour of
this leaf node to the sequence (as ai) and delete that leaf node.

After n − 2 iterations, only one of the n − 1 edges remain and we
have produced f(T ).

Figure 7: The Prufier code for this graph {1,2,1,3,3,5} which is formed by removing
vertex 4,6,2,1,7 and 3 in that order.

Part 2: One-one map: Sn−2 → Trees
Consider a sequence s ∈ Sn−2 ,s = (a1, a2, ...an−2) where each ai ∈

S. Let m be minimum of the remaining elements not covered by a′is.
Connect a1 to the m. Replace a1 with m in the sequence.

We search for minimum element not in present updated sequence;
connect a2 with it; replace a2 with it and thus update the sequence yet
again.

Connect the last two remaining vertices not in the sequence to com-
plete the tree.

We repeat the produce up to n− 2 times, each time update the
sequence.
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Example: Consider the sequence s={1,2,1,3,3,5}; and the set of ver-
tices S=1,2,..8.

Step 1: Minimum element of S not in s is 4. Connect 1-4. Updated
sequence s={4,2,1,3,3,5}
Step 2: Minimum element of S not in s is 6. Connect 2-6. Updated
sequence s={4,6,1,3,3,5}
Step 3: Minimum element of S not in s is 2. Connect 1-2. Updated
sequence s={4,6,2,3,3,5}

Figure 8: Steps 1-3

Step 4: Minimum element of S not in s is 1. Connect 1-3. Updated
sequence s={4,6,2,1,3,5}
Step 5: Minimum element of S not in s is 7. Connect 3-7. Updated
sequence s={4,6,2,1,7,5}
Step 6: Minimum element of S not in s is 3. Connect 5-3. Updated
sequence s={4,6,2,1,7,3}.

Step 7: Since {5,8} are not present in the list we connect them to
get the desired sequence.

The final graph is as in Figure 7.
Having explicitly defined the bijective map and its inverse we now

it is evident that the number of labeled trees is same as |Sn−2| which is
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Figure 9: Steps 4-6

nn−2 thus completing the proof.
�

Theorem 17.5.4. Number of labeled trees with n vertices and degree
sequence d1, d2, ...dn is given by

(n− 2)!∏n
i=1 (di − 1)!

Proof. While constructing the Prufier code of tree T we record x each
time we delete the neighbour of x till we delete x itself or leave x among
the last two vertices. Thus each vertex of x appears in dx − 1 times in
Prufier code.

Therefore we count trees with these vertex degrees by counting lists
of length n−2 that for each i have di−1 copies of i. If we assign subscript
to copies for each i to distinguish them, then we are permuting n − 2
distinct objects and there are (n − 2)! list. Since copies of i are not
distinguishable, we have counted each desired arrangement Πn

i=1(di−1)!
many times, once in each way to order the subscript of each type.

�
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