
Discrete Mathematics 01/04/2019

Lecture 16: Eulerian Tours and Hamiltonian Cycles

Instructor: Goutam Paul Scribe: Souhardya Sengupta

1 Introduction

In this lecture, we will take up the problem of traversing through a graph through trails and
cycles. Its a natural question to ask whether we can travel through a graph following its
edges and visit certain(or all) vertices or edges. This question can serve as an abstraction
to many other problems.
One might ask, whether it is possible to travel through a city visiting each town once, or
maybe which states of a Markov chain are accessible from certain other states, or simply,
which web pages maybe reached from other pages following the links contained in that page.
Observe, all these problems boils down to the same abstract problem of traversing through
the graph.
However, here we will consider only two specific instances of paths and trails, in this dis-
cussion.
Next we present a historical problem, that was one of the strongest motivation for Euler
behind coming up with the theory of graphs.

1.1 The Könisberg bridge problem

Figure 1: The city of Könisberg

The city of Könisberg in the Prussian empire had four blocks: A,B,C,D connected by
seven bridges over the river Pregel. The map is shown in Figure 1. On Sundays, the citizens
of Könisberg would promenade about the town, and the problem arose as to whether it was
possible to plan a promenade in such a way that each bridge is crossed exactly once and
only once.
This fairly non-intuitive problem is difficult to solve. This problem was a major motivation
for Leonhard Euler behind his theory of graphs. Euler came up with a brilliant solution to
this, which turns out to be one of the most important results in his first paper on graph
theory. We will look at his clever way out to this problem, later in our discussion.
Euler came up with objects, that are called Eulerian trails in his honour, about which we

16-1



shall be studying now. The city of Könisberg now is a part of the Russian state by the
name of Kaliningrad.

2 Tours and Eulerian trails

Definition 2.1. For a graph G, a closed walk covering all the edges is called a tour.

Definition 2.2. A walk covering each edge of a graph G exactly once is called an Eulerian
trail. If an Eulerian trail is closed, its called an Euler tour or a closed Eulerian trail or an
Eulerian circuit (since a closed trail is also called a circuit).

Let’s consider some examples:

Figure 2

Figure 3

Example 2.3. In figure 2, observe that x1 − x2 − x3 − x1 − x4 − x3 − x1 is a tour, since
its closed and covers each edge once, however its not an Eulerian tour since it repeats the
edge {x1, x3}.
x1 − x2 − x3 − x1 is not a tour since it doesn’t visit the edge {x1, x4} and {x3, x4}.

Example 2.4. In figure 3, v1− v2− v3− v4− v5− v3− v1− v2 is an Eulerian trail. In fact,
its an Euler tour.

Definition 2.5. A graph having an Euler tour is called an Eulerian Graph.

The next theorem provides an easy condition to check whether a graph is Eulerian or
not.

Theorem 2.6. A connected graph is Eulerian iff each vertex has even degree.

Proof. only if part:
Consider an Eulerian graph G=(V ,E). Now by definition ,∃ an Eulerian tour, say C, starting
and ending at say, u ∈ V . Consider a vertex v ∈ V
Then we have the following cases:
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Case 1: u 6= v
Since, v is a part of C, and noting that C is a closed walk and every edge occurs exactly
once, we conclude that v must be entered and exited by two different edges. Thus, we can
group the edges meeting v as {(ei, fi)}, for i = 1, 2, . . . n, for some number n, satisfying,∀
i, ei 6= fi and ∀i, j ei = ej iff fi = fj and i = j, where ei and fj are edges. As an example,

Figure 4

consider figure 4, showing edges meeting a certain vertex. We are grouping the edges as:
{(e1, f1), (e2, f2)}. Note that then, d(v)= 2n, and hence is even.
Case 2: u = v
Note in this case, the start and the end edges contribute 2 to d(v). Except this, if v is
repeated somewhere else in C, then a similar argument as case 1 yields that the number of
additional edges meeting v must be even. Hence,d(v) must be even.
if part:
Assume that the graph G = (V,E), satisfies d(v) is even ∀v ∈ V .
Note that for any v, d(v) 6= 0, else the graph would have been disconnected. So, the minimum
degree of any vertex is at least 2. Thus δ(G) ≥ 2 and hence, ∃ a cycle C of length at least 3.
Let n = |V |. We will apply induction on n.
Base case: n = 3, and thus G is a triangle and hence is trivially Eulerian.
Induction hypothesis: Assume that ∀n ≤ m, a graph with n many vertices with degree of
each edge even, is Eulerian.
Induction step: Now consider n = m+ 1.
Consider a graph G with m + 1 vertices, such that each vertex-degree is even. As noted
earlier, G has a cycle C.
Now, define G = G − C. Remove the isolated vertices of G to obtain graph H (Note that
a vertex in G is isolated iff it was a part of cycle and had all its neighbour confined in the
cycle C).
Assume that H is composed of connected components {Hi}, for i = 1, 2, . . . k for some k.
Since, G was connected, thus ∀1 ≤ j ≤ k, ∃ vertex vij ∈ C such that, vij ∈ Hj . Observe
that after removing the cycle C, only 2 edges associated with the vertex vij gets deleted.
Thus its degree in Hj still remains even. Thus, the degree of each vertex in Hi is even ∀i.
By induction hypothesis, each Hj has an Euler tour Ej , such that Ej starts and ends at vij .
Construct an Euler tour for graph G as follows:
E = (v1, e2, . . . , vi1 , E1, vi1+1, ei1+2, . . . , vik , Ek, vik+1, eik+2, . . . , el, vl)
where, C = (v1, e2, v3, . . . , el, vl) and obviously vl = v1.
What we are basically doing is starting from vertex v1 of C, and then going along the cycle,
untill we encounter some common vertex with a connected component, say (WLOG) H1.
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We then complete the Euler tour E1 and then continue along the cycle C, untill we complete
it. This closed walk we get is denoted E and by its construction, its immediate that its an
Euler tour, and hence G is Eulerian.

Consider figure 5 for a simple demonstration of the proof. Here, C is the cycle, and H1

Figure 5: Demonstration of the proof of if
part

and H2 are the connected components left, after removing C and the isolated vertices. This
completes the induction step, and hence proves the if part.

Theorem 2.7. A connected graph has an Eulerian trail iff there are atmost two odd degree
vertices.

Proof. only if part:
Consider a connected graph G = (V,E) having an Euler tour H starting and ending at
vertices u and v respectively. Consider any other vertex w other than u or v. Since H is
an Euler tour, thus w must have occurred in H, somewhere other than the endpoints. By
an argument similar to the only if part of the previous theorem, we conclude, w must have
even degree. Thus, there can be atmost two vertices with odd degree, namely u and v. This
proves the only if part.
if part:
Consider a connected graph G such that it has atmost two odd degree vertices.
Now in case, it has no odd degree vertices, then the previous theorem applies and hence we
conclude the graph has an Eulerian trail (which is in fact a tour). Noting that a graph can
have even many vertices of odd degree, we are only left with the case when G has exactly
two odd degree vertices {u, v}.
Consider the graph H = (V,E ∪{u, v}), that is we are adding a new edge between u and v.
Note, each vertex of H has an even degree and thus, the previous theorem implies there is
a closed Eulerian trail E in H. If we remove the vertex {u, v} from E , we would get atleast
an Eulerian trail T in G.
Hence under any case, G contains an Eulerian trail. This completes the proof.

2.1 The Könisberg bridge problem: Solution

Here we present a simple solution to the Könisberg bridge problem (Euler), using the pow-
erful tools we just developed.

Note that the map of the city of Könisberg can be reduced to figure 6. The problem asks
whether this connected graph has an Eulerian trail or not. Now observe that the vertices D,
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Figure 6: The city of Könisberg: Graph
skeleton

C and B have degree 3 each, and A has degree 5. Since there are more than two (in fact
all) vertices of odd degree in this connected graph, hence it cannot have an Eulerian trail.
Thus, it was not possible for the people of Könisberg to make a tour of the entire city, with
double-crossing a bridge!

3 Hamiltonian Path and Cycle

In the year 1859, the Irish mathematician Sir William R. Hamilton made a dodecahedron
out of wood and assigned names of some important city to each of the vertices.The challenge
was to find a route along the edges of dodecahedron that started from a city and ended on
it, visiting every other city exactly once. This is famously known as the Hamilton’s puzzle.
The graph of a dodecahedron in given in figure 7.

Figure 7: Graph of a dodecahedron

As we will see, this is about finding what is called a Hamiltonian cycle in the graph.
Let’s begin with some definitions.
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Definition 3.1. For a graph G, a path covering all of its vertices is called a Hamiltonian
path.

Definition 3.2. A cycle covering all the vertices of a graph G, is called a Hamiltonian
cycle.

And quite obviously,

Definition 3.3. A graph is called Hamiltonian, if it contains a Hamiltonian cycle.

Figure 8 Figure 9

Example 3.4. In figure 8, v2 − v1 − v4 − v3 is a Hamiltonian path.
In figure 9, x1 − x2 − x3 − x4 − x5 − x6 − x1 is a Hamiltonian cycle.

We might also be interested in graphs, that are not Hamiltonian but are closest to the
Hamiltonian property. The next definition captures it:

Definition 3.5. A Maximal non-Hamiltonian graph is a non Hamiltonian graph G, such
that the addition of an edge between any two non-adjacent edges, makes it Hamiltonian.

Figure 10
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Example 3.6. In figure 10, note that both the figures are maximally non-Hamiltonian.
Addition of an edge between any two non-adjacent vertices makes it Hamiltonian, for both
of them. The first one of them goes by the name butterfly graph and the next one by (4,1)-
lollipop graph.

Theorem 3.7. Suppose G = (V,E) is a simple graph with n = |V | ≥ 3 vertices such that
δ(G) ≥ n

2 . Then G is Hamiltonian.

Proof. Let’s assume to the contrary that ∃ some non-Hamiltonian graph G = (V,E) satisfy-
ing the conditions mentioned in the theorem. Note that we can add edges without violating
the conditions on the lower bound of δ(G). Hence WLOG, assume that G is maximal non-
Hamiltonian.
Let V = {v1, v2, . . . vn}.
Hence, ∃ atleast two non-adjacent vertices, u and v. Now form a new graph H by adding
the edge {u, v} to G. Then H has to be Hamiltonian and thus there is a Hamiltonian cycle
C. Remove the edge (if at all) from C, to obtain H, which is atleast a Hamiltonian path
and is entirely contained in G. Thus G contains a Hamiltionian path of the form:
H : u = v1 − v2 − · · · − vn = v.
Now define the following sets,
A = {vi : u− vi+1 is an edge,
B = {vj : v − vj is an edge;
We make the following claims:
Claim 1: vn /∈ A
Pf: If this were the case, then we would have got a loop at v1(= vn), which contradicts the
fact that the graph is simple. This proves the claim.
Claim 2: vn /∈ B
Pf: Similar to claim 1, if this were not the case, then we would have a loop at vn. Thus
claim 2 must be true.
Claim 3: A ∩B = φ
Pf: If not, then ∃ k, such that vk ∈ A ∩ B. Then we have edges, v1 − vk+1 and vn − vk
respectively. Thus we have a Hamiltonian cycle
C : v1 − vk+1 − vk+1 − · · · − vn − vk − vk−1 − · · · − v1
which is a clear contradiction to our assumption that G is non-Hamiltonian. This proves
the claim.
And thus from claim 3, |A ∪ B| = (|A| + |B|) < n (∵ atleast vn is left out from both
A and B).
However, note that the lower bound on the degree posed by the condition in the theorem
suggests that |A| ≥ n

2 and |B| ≥ n
2 =⇒ |A|+ |B| ≥ n which gives a contradiction.

This completes the proof

Let’s look at some corollaries.

Corollary 3.8. Let G be a simple graph with n vertices, and two non-adjacent vertices
u and v such that d(u)+d(v)≥ n. Then, G is Hamiltonian iff G′ formed by adding the edge
{u, v} to G, is Hamiltonian.

Proof. The only if part follows trivially. G is a Hamiltonian graph, and hence has a Hamil-
tonian cycle. With addition of an edge, the same cycle remains Hamiltonian in the new
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graph G′. Hence, G′ is a Hamiltonian graph.
Now consider the only if part.
Assume to the contrary that G′ is Hamiltonian whereas G is not. Now since G′ is Hamil-
tonian, hence there is a Hamiltonian cycle C in G′. Delete the edge {u, v}(if at all present)
from C, to obtain a Hamiltonian path P.
Now, note that ∵ P doesn’t contain the edge {u, v}, it must also be a Hamiltonian path for
the graph G. Now, observe the edge {u, v} /∈ P, and by definition, P visits each vertex of
G exactly once. Hence we may assume, P has the following form:
P : u = v1 − v2 − · · · − vn−1 − vn = v, where {vi : 1 ≤ i ≤ n} is the set of vertices of G.
Claim: If for i ∈ {2, 3, . . . , n− 1}, u is adjacent to vi, then v and vi−1 are not adjacent.
Pf: If this were the case, then the path: v1 − vi − vi+1 − · · · − vn − vi−1 − vi−2 − · · · − v1
is a Hamiltonian cycle in G, which is a contradiction. Hence, our claim must be true.
Thus by virtue of the claim, each of the vertices vi, i ∈ {2, 3, . . . , n−1}, must be adjacent to
atmost one of u or v. And thus d(u) + d(v) < n which is a contradiction to our assumption
that the sum is atleast n.
This proves the if part.

Next we consider what is called the closure of a graph.

Definition 3.9. Let G be a graph with n vertices, then the closure of G (denoted by c(G))
is the graph obtained by adding edges between non-adjacent vertices whose degree sum is
atleast n, untill this can no longer be done.

Figure 11

Example 3.10. Consider figure 11. We are starting with a graph G1 with 5 vertices. We
will obtain its closure. Consider the non-adjacent vertices x2 and x5. Their degree sum is
5. Thus, we add an edge between them to obtain graph G2. Now in G2, the non-adjacent
vertices x1 and x4 have degree sum 5, and hence we add an edge between them to obtain
G3. In this new graph x3 and x1 are non-adjacent with degree sum 5, hence we add an edge
between them to obtain G4. Similarly, we add an edge between x3 and x5 in G4 to obtain
G5. No non-adjacent vertices are left in G5. Hence, c(G1)=G5. In this regard, it should
be pointed out that, since there are multiple ways to arrive at the closure of a graph, the
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problem of uniqueness must be settled before we make any further claim. This is done in
the next lemma.

Lemma 3.11. For a graph G, c(G) does not depend on the order in which we chose to add
edges when more than one is available.

Proof. Suppose G1 and G2 are obtained as c(G) from G by two different implementations
of the closure procedure. Let n = |V [G]|.
Let e1, e2, . . . , es and f1, f2, . . . , ft denote the sequence of edges added to G to make G1 and
G2, respectively.
Claim: Every edge of G1 is in G2 and vice-versa, i.e, ei ∈ E[G2] and fj ∈ E[G1] ∀ i, j.
Pf: Suppose not. Let ek+1 = u − v be the first edge of G1 not in G2. Consider graph H
obtained from G by adding edges e1, e2, . . . , ek. Then:

• ek+1 ∈ E[G] =⇒ in H, d(u) + d(v) ≥ n.

• H is a subgraph of G2. So, d(u) in G2 ≥ d(u) in H, and d(v) in G2 ≥ d(v) in H.

It follows that d(u) + d(v) in G2 is ≥ d(u) + d(v) in H ≥ n. Thus, Ek+1 should be an edge
of G2, which is a contradiction.
This proves the claim.
∴ E[G1] = E[G2] and since, they contain the same set of vertices (i.e, the set of vertices of
G), we must have G1 = G2, and thus c(G) is well defined.

Hence, the closure of a graph is unique. We now turn to our next corollary.

Corollary 3.12. (Bondy-Chavátal) G is Hamiltonian iff c(G) is Hamiltonian

Proof. Note that by definition of closure, we see that ∃ graphs G0, G1, . . . , Gk, such that
G0 = G and Gk = c(G) and Gi is obtained from Gi−1, by adding edges to the later, adhering
to the conditions imposed by the definition of closure ∀1 ≤ i ≤ k. Now, the previous
corollary implies that Gi−1 is Hamiltonian iff Gi is Hamiltonian. And thus induction implies
G = G0 is Hamiltonian iff c(G) = Gk is Hamiltonian.

This concludes our discussion on Hamiltonian Paths and Cycles.

4 Complexity Issues

We’ve uptill now discussed some theoretical results on occurrence of Eulerian trails and
Hamiltonian cycles in graphs. Now let us turn to the practical problem of actually deciding
whether a given graph G is Eulerian or Hamiltonian.
Lets turn to them one by one.
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4.1 Deciding whether G is Eulerian

Theorem 2.6 provides us with an easy method for this problem when G is connected. We
just need to check whether each vertex has even degree or not. If G has n vertices, then the
most obvious way for checking this would be:

• Consider a vertex v.

• Check every other vertices u for adjacency and find d(v). If d(v) is odd, the graph is
not Eulerian. Else, proceed.

• Repeat untill all vertices have been checked.

If all the vertices pass the test, the graph is Eulerian.
From the second step we observe, we are making n−1 comparisons, for each vertex v. Hence
a total of n(n− 1) comparisons. Thus the problem can be solved in O(n2) time.

4.2 Deciding whether G is Hamiltonian

Deciding upon whether a graph is Hamiltonian, turns out to be a difficult problem (in fact,
its NP complete). We didn’t come across any necessary and sufficient condition for it.
Theorem 3.7 gives a sufficient condition for a graph to be Hamiltonian. By an argument
similar to the previous section, we conclude, the conditions of this theorem can be checked
in O(n2) time as well.
However, if this condition fails to hold, we have no confidence that the graph is not Hamil-
tonian.
In this context, it would be interesting to look upon another such graph theoretic NP hard
problem, that goes by the following name:

4.3 The Travelling Salesman Problem (TSP)

Statement: Given a list of cities, with a given cost of travelling between a pair of cities. If
it is possible to travel from any city to any other city, which route will minimise the expense
of a salesman, who wants to travel each city once, and return back to his original starting
point?
A better graph theoretic formulation of the above problem maybe:
“Given a complete graph Kn with preassigned weights to each edge, which sequence of edges
will travel each vertex atleast once, minimising the sum of the weights?”

The above problem has been studied for decades. However, an efficient algorithm is still
unknown.
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