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Lecture 14: Degree and Degree Sequence
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1 Introduction

In this lecture, we will briefly discuss on neighbourhood and degree of a vertex in a graph.
Then, there will come some results related to degree of vertices of a graph. Finally, we will
define graphic sequence and prove a theorem on graphic sequence reduction.

2 Neighbourhood of a vertex

Definition 2.1. (Neighbourhood of a vertex v) For the graph G = (V,E) neighbourhood of
the vertex v ∈ V (denoted by N(v)) is the set of all vertices which are adjacent to vertex
v.That is;

N(v) = {u ∈ V : ∃ edge (u,v) ∈ E}

.
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In this figure,
N(v1) = {v3, v5};
N(v2) = {v4, v5};
N(v3) = {v1, v4, v5};
N(v4) = {v2, v3};
N(v5) = {v1, v2, v3}.

3 Some terminologies related to degree

Definition 3.1. (Degree of a vertex in an un-directed graph) The degree of a vertex in an
un-directed graph is the number of edges incident with it, except that a loop at the vertex
contributes twice to the degree of it. Degree of the vertex v is denoted by deg(v) or d(v).
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Figure 1: un-directed graph

In this figure,
d(v1) = 4;
d(v2) = 4;
d(v3) = 3;
d(v4) = 3;
d(v5) = 4;
d(v6) = 0.

Definition 3.2. (Initial and terminal vertex of an edge in a digraph) When (u, v) is an
edge of a directed graph or digraph G, u is said to be adjacent to v and v is said to be
adjacent from u.The vertex u is called the initial vertex of the edge (u, v), and v is called
the terminal or end vertex of it. The initial vertex and terminal vertex of a loop are the
same.
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Definition 3.3. (In-degree and out-degree of a vertex in a digraph) In a digraph the in-
degree of a vertex v, denoted by deg−(v) or d−(v), is the number of edges with v as their
terminal vertex. The out-degree of v, denoted by deg+(v) or d+(v), is the number of edges
with v as their initial vertex. (Note that a loop at a vertex contributes 1 to each of the
in-degree and the out-degree of the vertex.)
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Figure 2: In-degree and out-degree of a vertex in a digraph

In this figure,
deg−(v1) = 1;
deg+(v1) = 1;
deg−(v2) = 2;
deg+(v2) = 3;
deg−(v3) = 2;
deg+(v3) = 0;
deg−(v4) = 1;
deg+(v4) = 2.

Definition 3.4. (Degree of a vertex in a digraph) In a digraph, degree of a vertex v, denoted
by deg(v) or d(v) is the sum of the in-degree and out-degree of that vertex.That is;

deg(v) = deg−(v) + deg+(v)

In figure 2,
deg(v1) = 2;
deg(v2) = 5;
deg(v3) = 2;
deg(v4) = 3.

4 Some results related to degree

Theorem 4.1. Given a graph G = (V,E),
∑
v∈V

d(v) = 2|E|.
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Proof: For un-directed graph, each edge connecting two vertices u & v contributes 1 to
the degree of u & 1 to the degree of v. Also a loop contributes 2 degrees to a vertex.
For digraph, each edge with initial vertex u & terminal vertex v contributes 1 to the out-
degree of u and 1 to the in-degree of v. Also, a loop at a vertex contributes 1 to each in its
in-degree and out-degree.
Hence, each edge of the graph contributes 2 degrees to the number of total degrees of all
the vertices.
Hence,
2 * Number of edges = total number of degrees of the graph (both in directed and un-
directed graph).

Theorem 4.2. Number of odd degree vertices in a graph is even.

Proof: From the previous theorem, we know that total number of degrees of all the
vertices of a graph is even.
Let U be the set of all odd degree vertices and W be the set of all even degree vertices.
Therefore,

∑
v∈U

d(v) +
∑
v∈W

d(v) = An even number.

Now, as each term in the sum
∑
v∈W

d(v) is even, hence the total sum is also even.

Therefore,
∑
v∈U

d(v) is even.

But each term of the summation
∑
v∈U

d(v) is odd. So, in order to make the total sum even,

there should be even number of these odd terms.
In other words, number of odd degree vertices in a graph is even.

Theorem 4.3. For a simple graph with at least two vertices, there must be at least two
vertices having the same degree.

Proof: Let G = (V,E) be a simple graph (that is, no self-loops and no parallel edges).
Suppose, |V | = n.
Therefore, for any v ∈ V , d(v) ∈ {0, 1, ..., (n− 1)}.
But, if any of the n vertices has degree 0, that means it is connected to no other vertex of
the graph.
Therefore, no other vertex of the graph can have the degree (n− 1).
Similarly, if any vertex of the simple graph has degree (n − 1), it means it connects to all
other edges of the graph and therefore, no vertex can have degree 0.
That means, the degrees of the n vertices either take values from {0, 1,...,(n-2)} or from
{1,...,(n-1)}.
In each case, there are n vertices taking values from a set of (n− 1) elements.
therefore, by PHP, two of them will take the same value.
Hence, at least, two of the vertices of the simple graph have the same degree.
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5 Degree sequence

Definition 5.1. (Degree sequence) A sequence (d1, d2,..., dn) of non-negative integers is
called a degree sequence if d1 ≥ d2 ≥ ... ≥ dn, with

∑n
i=1di = even and in the sequence

(d1,d2,...,dn) there are even many odd terms.

Note: Given a degree sequence of length n, we can always construct a graph with n
vertices taking degree from the degree sequence, but the graph is not necessarily a simple
one.

Definition 5.2. (Graphic sequence) A degree sequence of length n is called a graphic
sequence if there exists a simple graph with n vertices taking degrees from the degree
sequence.

Example 1: (3, 1, 0) graphic?

v1 v2 v3

But this is not a simple graph as v1 has a loop. So, the degree sequence is not graphic.

Example 2: (2, 1, 1) graphic?

v1 v2

v3

This is indeed a simple graph. Therefore, (2, 1, 1) is a graphic sequence.

6 An important theorem on graphic sequence reduction

Theorem 6.1. A degree sequence (d1, d2,..., dn) of n elements (n ≥ 2) where d1 ≥ d2 ≥
... ≥ dn is graphic if and only if (d2 - 1, d3 - 1,..., dk - 1, dk+1 - 1, dk+2 - 1,..., dn) is
a graphic sequence of (n − 1) elements where k = d1. [Note that for n = 1, the only one
element graphic sequence is d1 = 0 ].

Proof: For n = 1, we already know that the one element degree sequence {d1} will be
graphic iff d1 = 0.

14-5



So, take n ≥ 2.

First we will prove the if part.
Given, the degree sequence d = (d1, d2,..., dn) with d1 ≥ d2 ≥ ... ≥ dn, define d′ = (d2 - 1,
d3 - 1,..., dk - 1, dk+1 - 1, dk+2 - 1,..., dn) .
Now, suppose d′ is graphic. That is, ∃ a simple graph G′ with (n− 1) vertices with degree
sequence d′ with the elements of d′ arranged in descending order.
Then, in G′, add one extra vertex adjacent to the first k many vertices having degrees d2 -
1, d3 - 1,..., dk - 1, dk+1 - 1 respectively.
The new graph G still remains simple with n many vertices taking their degrees from the
degree sequence d.
Hence, d is also a graphic sequence.
This completes the if part.

Now, we will prove the only if part.
Given a simple graph G with n many vertices and degree sequence d, we have to construct
a simple graph with (n− 1) many vertices and degree sequence d′.
Let v be the vertex with the highest degree d1 in G.
Let S be the set of the k vertices in G having degrees d2, d3,..., dk+1.
Now, there will be two cases.
Case 1: Neighbourhood of the vertex v, N(v) = S.
In that case, just delete the vertex v with all its k connections to each of the elements of S
to get the desired simple graph G′ with (n− 1) vertices and degree sequence d′.
Case 2: Some vertex of S is missing from N(v).
In that case, we modify G to increase |N(v) ∩ S| without changing any vertex degree.
Suppose, u∈S is missing from N(v). But in order to keep the deg(v) = k, there must be
another vertex w of G, w /∈ S such that v connects to w.
Claim: ∃ at least one vertex x ∈ N(u) such that w and x are not connected.
proof of the claim: If for all x ∈ N(u), w and x were connected, then, deg(w) ≥ deg(u) + 1
[this extra one degree comes from the edge between w and v when there is no edge between
u and v].
But, S contains the k highest degrees of G below d1 and u ∈ S =⇒ deg(w) ≤ deg(u)
[contradiction].
Hence the claim is true.
Therefore, among the four vertices v, u, w, x; v and w are connected and u and x are con-
nected.
Now, get a new graph by switching the edges between the four points; i.e., delete the edges
between (v, w) and (u, x) and connect (v, u) and (w, x) instead.
In this way, the vertex degrees remain the same but now u ∈ N(v) ∩ S.
Since modifying in this way, |N(v)∩S| can increase at most k times, repeating this process
converts G into another graph G1 that has degree sequence same as d but N(v) = S.
Therefore, we just return to case 1 and get the desired simple graph G′ with (n−1) vertices
and degree sequence d′.
Hence, d′ is a graphic sequence.
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This completes the only if part.

Application of the previous theorem: Show that (5, 4, 4, 3, 2, 2) is a graphic se-
quence.
reduction 1: (3, 3, 2, 1, 1).
reduction 2: (2, 1, 0, 1).
(Now, we can just avoid the vertex with degree 0. That is, if (2, 1, 1) is graphic, then
(2, 1, 0, 1) is also graphic. Because, in the simple graph having degree sequence (2, 1, 1)
just add another vertex with degree 0 to have a new simple graph with degree sequence
(2, 1, 0, 1).)
Hence, the actual reduction may be taken as (2, 1, 1).
reduction 3: (0, 0). Now, this is indeed a graphic sequence with a simple graph of two ver-
tices each having degree 0.
Hence, (5, 4, 4, 3, 2, 2) is a graphic sequence.
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