
Discrete Mathematics 27/02/2019

Solution to Mid-Semester Examination

Instructor: Goutam Paul Scribe: Ranojoy Dutta

1. (a) (2 points) Is the complement of a set unique? Justify.

(b) (8 points) Count the numbers of equivalence relations and partial order relations
on the set A = {1, 2, 3}

(c) (4 points) Does R and C have the same cardinality? Prove your claim.

Solution:

(a) Complement of a set is not unique as the universal set is not defined. So if N
is the set concerned, then its complement is R − N if R is the universal set,
whereas, Z− N is the complement when Z is the universal set.

(b) The number of equivalence relation on set with cardinality n is the number
of ways we can partition n. Here, A = {1, 2, 3}. The number of ways we can
partition 3 is 3, 2 + 1, 1 + 1 + 1. We can partition to 3 in 1 way, in 2 + 1 in 3
ways and 1 + 1 + 1 in 1 way. Hence the total number of equivalence relation is
5.
For the number of partial orders, we just list all the possible cases
1. no pair related: just one way to do that,

2. 1 < 2, with 3 incomparable: 3 ways to choose the small element, 2 ways to
choose the large, 6 orders all told,

3. a linear order, like 1 < 2 < 3: 6 orders like this,

4. one element larger than the other two, those two being incomparable: 3
orders like this, from the 3 ways to choose the big element, and

5. one element smaller than the other two, those two being incomparable: 3
orders like this, from the 3 ways to choose the small element.

All told, that’s 1 + 6 + 6 + 3 + 3 = 19.

(c) Consider f : C→ R2, such that f(a+ ib) = (a, b), ∀ (a+ ib) ∈ C. Clearly this
is a bijective function. Hence, we can conclude that C and R2 are equivalent,
i.e. C ∼ R2. Let, g : (0, 1)→ R , be a function such that g(x) = tan(πx− π

2 ).
g(x) takes all values of R, and hence is an onto function. πx− π

2 takes values
(−π

2 ,
π
2 ) in the interval (0, 1). As tanx is one one function in (−π

2 ,
π
2 ) we have

g(x) to be a bijective function. Thus R ∼ (0, 1). Hence, R × R = R2 ∼
(0, 1)× (0, 1) = (0, 1)2. Consider, p : (0, 1)× (0, 1)→ (0, 1) such that
g(0.x1x2x3 · · · , 0.y1y2y3 · · · ) = 0.x1y1x2y2x3y3 · · · . Note that p is an injective
function. Hence, (0, 1) dominates (0, 1) × (0, 1). Again consider q : (0, 1) →



(0, 1) × (0, 1) such that q(x) = (x, 12). This is also an injection and hence
(0, 1)× (0, 1) dominates (0, 1). So, (0, 1)2 ∼ (0, 1). Hence,

C ∼ R2 ∼ (0, 1)2 ∼ (0, 1) ∼ R

So, R and C have same cardinality.

2. (a) (2 points) Is the least element in a POSET necessarily unique? Justify.

(b) (3 points) Can there exist a POSET with multiple minimal elements, but only
one least element? Justify.

(c) (3 points) Find the fallacy in the following application of strong induction. Claim:
Given a ∈ R+ , one has that an = 1 , ∀n ∈ N(assume that N includes 0). In the
proof, show that base case for n = 0. Assume that ∀k ≤ n, it holds. And now
show that an+1 = an·an

an−1 = 1·1
1 = 1.

(d) (2 points) If a logical theory is inconsistent, what can we say about its complete-
ness?

Solution:

(a) Suppose the least element is not unique. Say, x and y are two least elements
in the POSET , say A. According to definition of least element , x ≤ a ∀a ∈ A
and y ≤ a ∀a ∈ A =⇒ x ≤ y and y ≤ x =⇒ x = y. Thus we conclude that
the least element is unique.

(b) Let the POSET be A. A minimal element say m in a POSET is such that
@a ∈ A such that a < m. Now let us assume there are multiple minimal
elements, say m1,m2, · · ·mp and a least element x. Now from the definition
of least element,we get, x ≤ mi ∀i = 1(1)p but from the definition of minimal
elements we have x ≮ mi ∀i = 1(1)p =⇒ x = mi∀i = 1(1)p, which is
a contradiction as mi’s are unique. Hence, there cannot be a POSET with
multiple minimum elements but one least element.

(c) Given a ∈ R+ one has to show that an = 1 ∀n ∈ N(assuming that N includes
0). To use strong induction, we start with base condition. When n = 0, a0 = 1
which is true. But for n = 1, we get a1 = a 6= 1∀a ∈ N− {1}. Thus we cannot
use strong induction in this problem.

(d) A logical theory is inconsistent when any statement in the theory and its
negation can be proved using the axioms of the theory. A logical theory is
complete when every true statements in the theory can be proved using the
axioms. Thus completeness contains inconsistency. Thus if a logical theory is
inconsistent then it is also complete.
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3. (a) (4 points) Count the number of arrangements of n distinct letters in n distinct
envelopes so that exactly one letter goes to the correct envelope.

(b) (12 points) Count the number of integral solutions of the equation

x1 + x2 + x3 + x4 = 18,

that satisfy

1 ≤ x1 ≤ 5, −2 ≤ x2 ≤ 4, 0 ≤ x3 ≤ 5, 3 ≤ x4 ≤ 9

using two methods : inclusion-exclusion principle and the method of generating
functions.

Solution:

(a) Suppose that there are n letters numbered 1, 2, ..., n. Let there be n envelopes
also numbered 1, 2, ..., n. We have to find the number of ways in which no letter
goes to the envelope having same number as its number.Such an arrangement
is known as a derangement. Suppose we want to count Dn, the number of
derangements of {1, · · · , n}.
Let S be the set of all permutations of {1, · · · , n}, and

let Ti be the set of permutations which leave letter i in its natural position.

Then Dn = |T c1 ∩ · · · ∩ T cn|
= |S|−

∑
i |Ti|+

∑
i<j |Ti∩Tj |−

∑
i<j<k|Ti∩Tj ∩Tk|+ · · ·+(−1)n|T1∩· · ·∩Tn|

= n!−
(
n
1

)
(n− 1)! +

(
n
2

)
(n− 2)!−

(
n
3

)
(n− 3)! + · · ·+ (−1)n

(
n
n

)
(n− n)!

= n!− n!

1!
+
n!

2!
− n!

3!
+ · · ·+ (−1)n

n!

n!
= n!

[
1− 1

1!
+

1

2!
− 1

3!
+ · · ·+ (−1)n

1

n!

]
.

Now in this problem, we can choose 1 letter to go to the correct envelope in
n ways. Then we use derangement on the remaining n− 1 letters. Hence the
solution is :

n ·Dn−1 = n!

[
1− 1

1!
+

1

2!
− 1

3!
+ · · ·+ (−1)n−1

1

n− 1!

]
(b)

x1 + x2 + x3 + x4 = 18

1 ≤ x ≤ 5, −2 ≤ x2 ≤ 4, 0 ≤ x3 ≤ 5, 3 ≤ x4 ≤ 9

We take y1 = x1 − 1; y2 = x2 + 2 y3 = x3; y4 = x4 − 3. Thus,

0 ≤ y1 ≤ 4, 0 ≤ y2 ≤ 6, 0 ≤ y3 ≤ 5, 0 ≤ y4 ≤ 6

y1 + y2 + y3 + y4 = 16
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Using Inclusion Exclusion Principle:

A : (y1, y2, y3, y4) satisfying y1, y2, y3, y4 ≥ 0
P1 : (y1, y2, y3, y4) satisfying and y1 ≥ 5
P2 : (y1, y2, y3, y4) satisfying and y2 ≥ 7
P3 : (y1, y2, y3, y4) satisfying and y3 ≥ 6
P4 : (y1, y2, y3, y4) satisfying and y4 ≥ 7
We want, |P c1 ∩ P c2 ∩ P c3 ∩ P c4 |

= |A| −
∑
i

|Pi|+
∑
i<j

|Pi ∩ Pj | −
∑
i<j<k

|Pi ∩ Pj ∩ Pk|+ |P1 ∩ P2 ∩ P3 ∩ P4|

=

(
19

3

)
−
(

14

3

)
−
(

13

3

)
− 2

(
12

3

)
+

(
8

3

)
+ 2

(
7

3

)
+ 2

(
6

3

)
+

(
5

3

)
= 55

Using Generating Functions:

To find the coefficient of x16 in

(1 + x+ ·+ x4)(1 + x+ ·+ x5)(1 + x+ ·+ x6)2

=
(1− x5)(1− x6)(1− x7)2

(1− x)4
= (1− x5 − x6 + x11)(1− 2x7 + x14)(1− x)−4

= (1− x5 − x6 − 2x7 + x11 + 2x12 + 2x13 + x14 + · · · )(1− x)−4

=

(
19

3

)
−
(

14

3

)
−
(

13

3

)
− 2

(
12

3

)
+

(
8

3

)
+ 2

(
7

3

)
+ 2

(
6

3

)
+

(
5

3

)
= 55

4. Use generating functions to

(a) (4 points) count the number of n-bit sequences where both zeroes and ones appear
even number of times.

(b) (6 points) evaluate 2 + 8 + 24 + 64 + 160 + 384 + · · · upto n terms.

Solution:

(a) Let f(n) denote the number of n-bit sequences where both zeroes and ones
appear even number of times. Clearly note that if n is odd, then there cannot
be such a sequence as either number of zeroes or ones must be odd. Thus,
f(2n+ 1) = 0 ∀n ∈ N. Now, the generating function for number of 0 should be(

1 +
x2

2!
+
x4

4!
+ · · ·

)
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The above generating function is like that because the number of 0 must be
even and for k zeroes all the k! permutations are identical, so we need to divide
by k!. Similarly, the generating function for 1 is same. Thus f(n) will be the
coefficient of xn

n! in (
1 +

x2

2!
+
x4

4!
+ · · ·

)2

=

(
ex + e−x

2

)2

=

(
2 + e2x + e−2x

4

)
=

1

2

(
1 +

e2x + e−2x

2

)
The coefficient of xn

n! is 1
2 · 2

n = 2n−1.

(b) Let ak be the k-th term of the above sum and Sn be the n-th partial sum.
With some observation we can get that ak = k2k. Let F (x) be the generating
function of the terms, i.e.

F (x) =
∑
k≥0

akx
k =

∑
k≥0

k(2x)k

= 2x+ 2.(2x)2 + 3.(2x)3 + · · ·

= 2x(1 + 2.(2x) + 3.(2x)2 + · · · ) = 2x(1− 2x)−2

Now let G(x) be the generating function of the partial sums Sn i.e,

G(x) =
∑
n≥0

Snx
n

=
∑
n≥0

(a0 + a1 + · · ·+ an)xn = F (x)(1 + x+ x2 + · · · )

= F (x)(1− x)−1 =
2x

(1− 2x)2(1− x)

Breaking the LHS into partial fractions we get ,

2x

(1− 2x)2(1− x)
=

2

(1− 2x)2
− 4

(1− 2x)
+

2

1− x

=
∑
n≥0

(n+ 1)2n+1xn −
∑
n≥0

2n+2xn +
∑
n≥0

2xn

=⇒
∑
n≥0

Snx
n =

∑
n≥0

[(n− 1)2n+1 + 2]xn

Thus, Sn = (n− 1)2n+1 + 2.
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5. (a) (8 points) Solve the following recurrence relation:

an = 6an−1 − 9an−2 + (n2 + 1)3n, ∀n ≥ 2,

where a0 = 0, a1 = 1.

(b) (6 points) A divide and conquer algorithm works on an integer array of size n. For
n ≥ 2, it divides the array into two almost equal halves and recursively processes
each part. After the recursive calls return, it takes constant time 1 (i.e, just
one elementary operation) to combine the solutions on the parts. Formulate a
recurrence for the time complexity function t(n) and use induction on n to show
that t(n) ∈ O(n). Note that n is any positive integer n ≥ 2 and not necessarily a
power of 2.

Solution:

(a) Let us first solve the homogeneous equation an = 6an−1 − 9an−2 which gives,

x2 = 6x− 9 =⇒ (x− 3)2 = 0

Thus the homogeneous solution is an = c13
n + c2n3n. Now for the particular

solution we take an = n2(an2 + bn + c)3n as the root 3 has multiplicity 2.
Putting the value in the given recurrence relation, we get

n2(an2 + bn+ c)3n

= 6(n−1)2(a(n−1)2+b(n−1)+c)3n−1−9(n−2)2(a(n−2)2+b(n−2)+c)3n−2

+(n2 + 1)3n

Simplyfying the above equation we get

(1− 12a)n2 + (24a− 6b)n+ (−14a+ 6b− 2c+ 1) = 0

Comparing the coefficients we get, a = 1
12 ; b = 1

3 ; c = 11
12 . Hence, the general

solution is

an = c13
n + c2n3n + n2

(
n2

12
+
n

3
+

11

12

)
3n

Given,a0 = 0 and a1 = 1, we get c1 = 0 and c2 = −1.Hence,

an = n2
(
n2

12
+
n

3
+

11

12

)
3n − n3n.

(b) t(n) denotes the time complexity function of array size n. It takes 1 constant
time to combine the solutions of the parts. The algorithm divides the array
into almost two equal halves and recursively progresses. clearly t(2) = 1. Thus
the recurrence relation is,

t(n) = t
(
bn

2
c
)

+ t
(
dn

2
e
)

+ 1
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(the two near equal halves and 1 time for combining them)
When , n = 2k , we have t(2k) = 2t(2k−1) + 1. If t(n) ∈ O(n) then

lim sup
n→∞

t(n)

n
<∞

Since, t(2) = 1 , t(2) ∈ O(n) .Thus the base case is true. So if t(2k) ∈ O(n),
then

t(2k+1) = 2t(2k) + 1

=⇒ t(2k+1)

2k+1
=
t(2k)

2k
+

1

2k

=⇒ lim sup
k→∞

t(2k+1)

2k+1
= lim sup

k→infty

[
t(2k)

2k
+

1

2k

]

=⇒ lim sup
k→∞

t(2k+1)

2k+1
<∞ (since t(2k) ∈ O(n))

=⇒ t(2k+1) ∈ O(n)

Now, if 2k < n < 2k+1, then t(2k) < t(n) < t(2k+1). By Sandwich Theorem,
we get t(n) ∈ O(n). Thus, t(n) ∈ O(n)∀n.

6. (a) (4 points) Let T (r, n) be the number of onto functions from a set with cardinality
r to a set with cardinality n. Prove the following recurrence using combinatorial
argument :

T (r, n) = nT (r − 1, n− 1) + nT (r − 1, n).

Algebraic derivation using any explicit formula would lead to zero credit.

(b) (4 points) Prove that the number of p-partitions of a positive integer n is equal to
the number of partitions of n+

(
p
2

)
into p distinct parts.

Solution:

(a) T (r, n) is the number of onto functions from a set with cardinality r to a set
with cardinality n. Choose an element from the set with cardinality r say a.
Now, if a goes to an element say b then either (1) no other elements goes to
b, or (2) atleast one other element goes to b. For (1) the total number of onto
functions are T (r − 1, n − 1) and for (2) the total number of onto functions
are T (r − 1, n). Now we can choose b in n ways, hence we get the following
recursion,

T (r, n) = n · (T (r − 1, n− 1) + T (r − 1, n))
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(b) Let λ1, λ2, · · ·λp be a partition of n such that λ1 ≥ λ2 ≥ · · · ≥ λp. Then,
λ1 + 1 > λ2; λ2 + 1 > λ3; · · · ; λp−1 + 1 > λp.
Therefore,

λ1 + (p− 1) > λ2 + (p− 2) > · · · > λp−1 + 1 > λp

= β1 > β2 > · · · > βp.

We have,
∑p

i=1 βi = n+ 1 + 2 + · · ·+ (p− 1) = n+
(
p
2

)
. Hence, β1, β2, · · ·βp is

a partition of n+
(
p
2

)
into p distinct parts. Proved.
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