
Quantum Information Processing and Quantum Computation 03/12/2015

Lecture 10: Quantum Period Finding
and Shor’s Factoring

Instructor: Goutam Paul Scribe: Kaushik Nath

1 The Period Finding Problem

Let
f : {0, 1, 2, . . . ,M − 1} → {0, 1, 2, . . . ,M − 1}

be a periodic function of period r, meaning that

f(x) = f(x+ r) ∀x ∈ {0, 1, 2, . . . ,M − 1}

and the values f(x), f(x+ 1), f(x+ 2), . . . , f(x+ r − 1) are all distinct. Suppose also that
M = 2m is a power of 2 and that r ≤M/2.

We will summarize a quantum algorithm that finds r in time polynomial in m and in the size
of a classical circuit computing f . The importance of the period-finding problem is that,
as we will see next time, the integer factoring problem reduces to it, and so the quantum
polynomial time for period-finding yields a quantum polynomial time algorithm for integer
factoring.

1.1 The Period Finding Algorithm

The quantum method for period finding essentially follows the steps in the algorithm given
below.

1. Create the quantum state 1√
M

∑
x |x〉|f(x)〉

Let Uf be a unitary transformation on l = m+m+O(S) bits that maps |x〉|0 . . . 0〉|0 . . . 0〉
to |x〉|f(x)〉|0 . . . 0〉, where S is the size of a classical circuit that computes f . We con-
struct a circuit over l qubits that first applies Hadamard gates to each of the first
m qubits. After these operations, starting from the input |0l〉 we get 1√

M
|x〉|0l(m)〉.

Then we apply Uf , which gives us the state 1√
M
|x〉|f(x)〉|0l(m)〉. From this point on,

we ignore the last l − 2m wires.

2. Measure the last m bits of the state 1√
M

∑
x |x〉|f(x)〉

The outcome of this measurement will be a possible output y of f(). Let us call x0
the smallest input such that f(x0) = y. For such an outcome, the residual state will
be

1√
[Mr]

[M
r
]−1∑

t=0

|x0 + tr〉|f(x0)〉

10-1

where [Mr] stands for bMr c or for dMr e depending on x0. From this point on we ignore
the last n bits of the state because they have been fixed by the measurement.

3. Apply the Fourier transform to the first m bits

The state becomes

1√
M

1√
[Mr]

∑
s

[M
r
]−1∑

t=0

ω(x0+tr)·s|s〉

4. Measure the first m bits

The measurement will give us an integer s with probability

1

M
· 1

[Mr]
|ωx0s|2

∣∣∣∣∣∣
[M
r
]−1∑

t=0

ω(x0+tr)·s

∣∣∣∣∣∣
2

=
1

M
· 1

[Mr]

∣∣∣∣∣∣
[M
r
]−1∑

t=0

ωtrs

∣∣∣∣∣∣
2

1.2 Analysis of the Algorithm

We will now discuss how to use the measurement done in step (4) in order to estimate r.
The point will be that, with noticeably high probability, s/M will be close to k/r for a
random k, and this information will be sufficient to identify r, after executing the algorithm
a few times in order to obtain multiple samples. The key to the analysis is to understand
the probability distribution of outcomes of the measurement in step (4). The analysis is
simpler in the special case in which r divides M , so we begin with this special case.

1.2.1 If M is a Multiple of r

Suppose that q = M/r is an integer, and let us call a value s “good”, if s is a multiple
of q. Note that there are exactly r good values of s, namely 0,M/r, 2M/r, . . . ,M − r. If
s is good, then, for every t, trs is a multiple of M , and so, ωtrs = 1, and the probability
that s is sampled is 1/r, and so the good values of s contain all the probability mass of the
distribution.

This means that in step (4) we sample a number s which is uniformly distributed in
{0,M/r, 2M/r, . . . ,M − r}, and the rational number s/M , which we can compute af-
ter sampling s, is of the form k/r for a random k ∈ {0, 1, . . . , r − 1}. After simplifying the
fraction s/M , we get coprime integers a, b such that, s/M = a/b ; if k and r are coprime,
then r = b, otherwise b is a divisor of r.

If we execute the algorithm twice, we get two numbers s1, s2 such that, si/M = ki/r for
random k1, k2. If we compute the simplified fractions ai/bi = si/M , then each bi is either
r, or a divisor of r, and, more precisely, we have bi = r/gcd(ki, r). Now, if gcd(k1, r) and
gcd(k2, r) are coprime then, r = lcm(b1, b2).

10-2

This gives us a quantum algorithm that computes r and whose error probability is the
probability that picking two random numbers k1, k2 ∈ {0, 1, . . . , r−1} we have that r, k1, k2
all share a common factor. The probability that this happens is at most the probability
that k1, k2 share a common factor, which is at most∑

p prime

P(k1 is a multiple of p ∧ k2 is a multiple of p) ≤
∑

p prime

1

p2

≤
∑
n≥2

1

n

=
π2

6
− 1

< 0.65

So, we have at least a probability of about 1/3 of finding the correct r, and this can be
boosted to be arbitrarily close to 1 by repeating the algorithm several times.

1.2.2 The General Case

For the general case, when r does not divide M , we define a value of s to be good if sr is
approximately a multiple of M . It can be shown that there are approximately r good values
of s, each with probability approximately approximately 1/r, so that the measurement at
step (4) will give us with good probability a value of s, such that s/M is close to a multiple
of 1/r, from which we will be able to get a divisor of r, and then, by repeating the algorithm
several times, the actual value of r.

2 The Order Finding Problem

For a ∈ Z∗N , the order of a ∈ Z∗N (or the order of a modulo N) is the smallest positive
integer r such that

ar ≡ 1(mod N)

The order finding problem is to find the order of an element a, given an integer N ≥ 2 and
an element a ∈ Z∗N . Classically this problem is hard. Certainly the obvious approach of
computing powers of a modulo N until 1 is obtained can take time exponential in the size
of N .

3 Reduction of Factoring to Order Finding

We can factor integers efficiently using quantum computers, and that this is the problem
solved by Shor’s algorithm. Now let us see that the integer factoring problem can be ef-
ficiently solved given an algorithm for order finding. In other words, factoring reduces
to order finding. The integer factorization problem is to find a prime factorization for
N = pk11 p

k2
2 . . . pkmm for a positive integer N ≥ 2.

10-3

Let us note a few facts, which we will not prove or discuss in any detail. First, if N is a
prime number or a prime power (i.e., pk for some prime p and integer k ≥ 1), then there are
efficient classical algorithms for solving the integer factorization problem in these cases. So,
we can imagine that we first run such an algorithm on the input N ; if it succeeds then we
are done, otherwise we continue on under the assumption that N has at least two distinct
prime factors (i.e., m ≥ 2).

Next, it is enough to have an algorithm that takes a composite N as input and just finds
two integers u, v ≥ 2 such that N = uv. If we have such an algorithm, we can run it
recursively (interleaved with the classical algorithm for prime powers) to find a complete
prime factorization of N .

Again if our goal is to find integers u, v ≥ 2 such that N = uv for N an even composite
number, then we really dont need to work very hard; we simply report u = 2 and v = N/2.

Algorithm 1 ReduceFactoringToOrderFind(N)

Require: N > 2, and odd composite integer which is not power of a single prime
Ensure: u and v such that N = u · v

1 while (N is not factored) do

2 a
$←− {2, 3, . . . , N − 1}

3 d := gcd (a,N)
4 if (d ≥ 2) then
5 return u = d and v = N/d
6 else
7 r := Order(a,N,Z∗N)
8 if (r%2 = 0) then
9 x = ar/2 − 1 ≡ (mod N)

10 d := gcd (x,N)
11 if (d ≥ 2) then
12 return u = d and v = N/d
13 end if
14 end if
15 end if
16 end while

Finally, the only case which needs to be addressed is the one for odd N which is not power
of a single prime. We assume that there is an efficient algorithm Order to solve the order
finding problem. Under the assumption Algorithm 1 gives a solution for the case. The
basic idea of why the algorithm works is as follows. Suppose that the random choice of a is
in Z∗N (which is very likely), and that the order r of a is even. Then

ar ≡ 1(mod N)

and so N |ar−1 which implies that N |(ar/2+1)(ar/2−1). It cannot happen that N |ar/2−1,
because this would mean that r was not then order of a at all. So, if we are lucky that it is

10-4

not the case that N |ar/2 + 1, then we know that the algorithm would work. This is because
the factors of N are necessarily split between ar/2 + 1 and ar/2 − 1, so computing the gcd
of ar/2 − 1 and N would reveal a nontrivial factor of N .

Each iteration of the loop therefore fails to give an answer if either r is odd or r is even but
N divides ar/2 + 1. The probability that neither of these events occur is at least 1/2.

10-5

	The Period Finding Problem
	The Period Finding Algorithm
	Analysis of the Algorithm
	If M is a Multiple of r
	The General Case

	The Order Finding Problem
	Reduction of Factoring to Order Finding

