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Lecture 2: Classical Ciphers II: Some number theoretic results on GCD
Instructor: Goutam Paul Scribe: Arup Biswas

2.1 GCD

Theorem 2.1 gcd (a, b) = min {ax+ by : ax+ by > 0, x, y ∈ Z}

Proof: let g = gcd (a, b).
let m = min{ax+ by : ax+ by > 0}
Need to show g = m.
Let S = {ax+ by : ax+ by > 0}.
Sinceg = gcd (a, b),
thereforeg | a and g | b.
⇒ g | ax and g | by, ∀x, ∀y ∈ Z.
⇒ g | ax+ by, ∀x,∀y ∈ Z.
⇒ g | ax? + by?, where m=ax? + by?

⇒ g | m.
⇒ g ≤ m. ......(1)

claim m | a suppose a = mq + r, 0 ≤ r < m.
⇒ r = a−mq = a− (ax? + by?)q
⇒ r = a(1− qx?) + b(−qy?) = ax′ + by′.

Further, if r > 0,
r = ax′ + by′ ∈ S
which contradicts the minimality of m ∈ S
⇒ r has to be 0.
⇒ m | a
Similar argument gives m | b.
∴ m is a common divisor of a and b.
⇒ m ≤ g.......(2)
(1) and (2) ⇒ m = g.

2.1.1 Extended Euclid’s Algorithm

Given a and b how to find x,y s.t. gcd(a, b) = ax+ by.
From extended euclid’s algorithm we can calculate the x and y.

w.l.g. assume a > b.
a = r−1
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b = r0
b | a we get quotient q1 and remainder r1

r−1 = r0q1 + r1
r0 = r1q2 + r2
.
.
.
rn−2 = rn−1qn + rn
rn−1 = rnqn+1 + 0
From Euclid’s algorithm we get
gcd(a,b)=rn = rn−2 − rn−1qn
= rn−2 − qn(rn−3 − rn−2qn−1)
= rn−2(1 + qnqn−1) + rn−3(−qn)
= (rn−4 − rn−3qn−2)(1 + qnqn−1) + rn−3(−qn)
from this derivation we can show that the gcd(a, b)=rn is the linear combination of r−1 and r0 that is linear
combination of a and b. From that linear combination we get the x and y. such that gcd(a, b) = ax+ by.

Example 1
a = 65 and b = 40
Step 1:The Euclidean algorithm:
65 = 1x40 + 25
40 = 1x25 + 15
25 = 1x15 + 10
15 = 1x10 + 5
10 = 2x5 + 0
therefore gcd(65, 40) = 5
Step 2:Using the method of back-substitution:
5 = 15− 10
= 15− (25− 15)
= 2 ∗ 15− 25
= 2 ∗ (40− 25)− 25
= 2 ∗ 40− 3 ∗ 25
= 2 ∗ 40− 3 ∗ (65− 40)
= 5 ∗ 40− 3 ∗ 65
= 65 ∗ (−3) + 40 ∗ 5
so x = −3 and y = 5.

Theorem 2.2 a−1 mod n exists iif gcd(a, n) = 1.

Proof: Suppose a−1 mod n exists, and is equal to x.
therefore ax = 1 mod n by defination.
⇒ ax = nq + 1, for some q.
⇒ ax+ n(−q) = 1
⇒ 1 = min{ax+ ny : ax+ ny > 0} = gcd(a, n) by Theorem 2.1

Suppose gcd(a, n) = 1
By Theorem 2.1,∃x?, y? s.t.
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ax? + ny? = 1
⇒ ax? = 1 mod n
⇒ x? = a−1 mod n , by definition.

(1) Given a and n s.t. gcd(a, n) = 1, how to find a−1 mod n.
Ans. Use extended Euclid‘s Algorithm

2.2 Affine cipher

ek(x) = (ax+ b) mod n; k = (a, b) s.t. gcd(a, n) = 1.
dk(y)=a−1(y − b) mod n, k = (a, b) s.t. gcd(a, n) = 1.
| Keyspace |= (number of b′s) * ( the number that is less than n and relatively prime to n). = n ∗ φ(n).
φ(n) is the euler’s totient function. φ(n)=| {1 ≤ x < n : gcd(a, n) = 1} |

2.3 Hill cipher

Hill cipher message encryption done block by block. Say block sizem. plaitext message x1, x2, ..., xm, xm+1, xm+2, ..., x2m,...
and ciphertext y1, y2, ..., ym, ym+1, ym+2, ..., y2m,...


y1
y2
.
.
.
ym

 =


k11 k12 . . . k1m
k21 k22 . . . k2m
.
.
.

km1 km2 . . . kmm

×


x1
x2
.
.
.
xm


Hill cipher decryption done by multiply invertible matrix. Xm×1 = K−1m×m × Ym×1 . Key space of the Hill
cipher is the number of m ∗m invertable matrix if the block size is m.

2.4 Substitution cipher

In substitution cipher one symbol in the plain text substitute by another letter in the alphabet.
Key space in the subtitution cipher is the all possible permutation of the alphbet set. In english apbhabet
key space is 26! ≈ 4 ∗ 1026

2.5 Models of attack

(1) Ciphertext only
In this model of attack adversary has access only to the ciphertext, and has no access to the plaintext. This
type of attack is the most likely case encountered in real life cryptanalysis, but is the weakest attack because
of the advarsary’s lack of information.
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(2) Known plaintext
In this model of attack adversary has access to at list a limited number of pairs of plaintext and the corre-
sponding ciphered text.
(3) Chosen plaintext
In this model attack the adversary is able to choose a number of plaintexts to be enciphered and have
access to the resulting ciphertext. This allows him to explore whatever areas of the plaintext state space he
wishes and may allow him to exploit vulnerabilities and nonrandom behavior which appear only with certain
plaintexts. In the widely used public-key cryptosystems, the key used to encrypt the plaintext is publicly
distributed and anyone may use it, allowing the cryptanalyst to create ciphertext of any plaintext he wants.
So public-key algorithms must be resistant to all chosen-plaintext attacks.
(4) chosen ciphertext
In this model attack the adversary can choose arbitrary ciphertext and have access to plaintext decrypted
from it


