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Attacks on RSA

1. Short Message Small Exponent Attack
Suppose c is the ciphertext corresponding to the message m. Then, c = me mod N . If m� N
and e� N , then me < N . So c becomes me and m becomes c

1
e .

2. Common Modulus Attack
Suppose c1 and c2 are two ciphertexts corresponding to the exponents e1 and e2 respectively,
and a common modulus N . Then, c1 = me1 mod N and c2 = me2 mod N . If gcd(e1, e2) = 1
then ∃x, y such that e1x+ e2y = 1. Then,

cx1c
y
2 mod N = (me

1)x(me
2)y mod N

= me1x+e2y mod N

= m mod N.

Theorem (Chinese Remainder Theorem). Suppose, a1 = x mod N1, a2 = x mod N2,
. . . , am = x mod Nm, where x is unknown, but a1, a2, . . . , am are known along with
N1, N2, . . . , Nm. If gcd(Ni, Nj) = 1,∀i 6= j, then there exists a unique solution
x mod N1N2 . . . Nm.

Proof. LetMi =
m∏

j=1,i6=j

. Then gcd(Mi, Ni) = 1,∀i ∈ {1, 2, . . . ,m}. Let bi = M−1i mod Ni,

∀i ∈ {1, 2, . . . ,m} and x = (
m∑
i−1

aiMibi) mod (N1N2 . . . Nm). Then x is the solution for

the m equations mentioned in the statement of the theorem, and is unique.

3. Common Exponent Attack
Suppose c1, c2 and c3 are three ciphertexts corresponding to the moduli N1, N2 and N3

respectively, where N1, N2 and N3 are co-prime, and a common exponent e. Then, c1 =
me mod N1, c2 = me mod N2 and c3 = me mod N3. Then me will have a unique solution
modulo N = N1N2N3(from Chinese Remainder Theorem). If m and e are small enough, such
that me < N , then the eth root of c gives m.

Padded RSA

The idea is to randomly pad the message before encrypting. A general paradigm for this approach
is shown in this construction. The construction is defined based on a parameter l that determines
the length of messages that can be encrypted.

Construction. Let GenRSA be as before, and let l be a function with l(n) ≤ 2n−2 for all n. Define
a public key encryption scheme as follows:
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1. Key-generation algorithm Gen: On input 1n, run GenRSA(1n) to obtain (N, e, d). Output the
public key pk = 〈N, e〉, and the private key sk = 〈N, d〉.

2. Encryption algorithm Enc: On input a public key pk = 〈N, e〉 and a message m ∈ {0, 1}l(n),
choose a random string r ← {0, 1}‖N‖−l(n)−1 and interpret r‖m as an element of ZN in the
natural way. Output the ciphertext c := [(r‖m)e mod N ].

3. Decryption algorithm Dec: On input a private key sk = 〈N, d〉 and a ciphertext c ∈ Z∗N ,
compute m̂ := [cd mod N ], and output the l(n) low-order bits of m̂.

Digital Signature

Definition (signature scheme - syntax). A signature scheme is a tuple of probabilistic polynomial-
time algorithms (Gen,Sign,Vrfy) satisfying the following:

1. The key generation algorithm Gen takes as input a security parameter 1n and outputs a pair
of keys (pk, sk). These are called the public key and the private key, respectively. We assume
for convenience that pk and sk each have length at least n, and that n can be determined from
pk, sk.

2. The signing algorithm Sign takes as input a private key sk and a message m from some
underlying message space(that may depend on pk). It outputs a signature σ, and we write
this as σ ← Signsk(m).

3. The deterministic verification algorithm Vrfy takes as input a public key pk, a message m and
a signature σ. It outputs a bit b, with b = 1 meaning valid and b = 0 meaning invalid. We
write this as b := Vrfypk(m,σ).

We require that for every n, every (pk, sk) output by Gen(1n), and every message m in the appro-
priate underlying plaintext space, it holds that Vrfypk(m,Signsk(m)) = 1.
We say σ is a valid signature on a message m(with respect to some public key pk that is understood
from the context) if Vrfypk(m,σ) = 1.

Secure DSA

Construction. Let Π = (Gen,Sign,Vrfy) be a signature scheme for message of length n and Π′ =
(Gen,H) be a hash function, where the output of H has length n on security parameter 1n.

1. Gen′, on input 1n, runs Gen(1n) to obtain (pk, sk) and runs Gen(1n) to obtain s. The public
key is pk′ = 〈pk, s〉 and the private key is sk′ = 〈sk, s〉.

2. Sign′, on input a private key sk′ = 〈sk, s〉 and a message m ∈ {0, 1}∗, computes σ′ ←
Signsk(Hs(m)).

3. Vrfy′, on input a public key pk′ = 〈pk, s〉, a message m ∈ {0, 1}∗, and a signature σ, outputs

1 if and only if Vrfypk(Hs(m), σ)
?
= 1.

We can construct a new signature scheme Π′ = (Gen′,Sign′,Vrfy′) for arbitrary-length messages as
follows: the public key contains a public key pk output by Gen as well as a key s output by Gen; the
private key is simply the one corresponding to sk(that was also output by Gen). To sign a message
m ∈ {0, 1}∗, the signer simply computes σ ← Signsk(H

s
(m)). Verification is performed by checking

that Vrfypk(H
s
(m), σ)

?
= 1.
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A Simple Forge on DSA

Suppose σ1 and σ2 are two signatures corresponding to the messages m1 and m2 respectively. Then,
σ1 = md

1 mod N and σ2 = md
2 mod N . Then σ1σ2 mod N is a valid signature of m1m2.

Digital Certificate

In cryptography, a public key certificate (also known as a digital certificate or identity certificate) is
an electronic document used to prove ownership of a public key. The certificate includes information
about the key, information about its owner’s identity, and the digital signature of an entity that has
verified the certificate’s contents are correct. If the signature is valid, and the person examining the
certificate trusts the signer, then they know they can use that key to communicate with its owner. In
a typical public-key infrastructure (PKI) scheme, the signer is a certificate authority (CA), usually
a company which charges customers to issue certificates for them. In a web of trust scheme, the
signer is either the key’s owner (a self-signed certificate) or other users (“endorsements”) whom the
person examining the certificate might know and trust.
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