
Cryptology 05.11.2015

Lecture 13: RSA II; ElGamal; Knapsack

Instructor: Goutam Paul Scribe: Laltu Sardar

1 Primality Testing

Primality testing simply is “Given an integer n decide if n is prime or composite”. Due to
the great invention of public key cryptography at the end of the 20th century, the interest
in primality testing has grown rapidly in the past three decades.

The security of this type of cryptographic schemes primarily relies on the difficulty
involved in factoring the product of very large primes.

Integer factorization poses many problems, a key one being the testing of numbers for
primality. A reliable and fast test for primality would help us in constructing efficient and
secure cryptosystem.

Therefore, the mathematics and computer science communities have begun to address
the problem of primality testing.

1.1 Deterministic Test

One of the simplest deterministic primality test is checking from i = 1 to n−1 if i|n. Which
can be reduced to check from i = 1 to

√
n if i|n. But both are exponential time algorithm

with respect to number of bits.
The AKS Algorithm is the first deterministic polynomial-time primality test named

after its authors M. Agrawal, N. Kayal, and N. Saxena. In August 2002, this algorithm was
presented in the paper “PRIMES is in P”, Agrawal et al. (2002).

The AKS primality test is based upon the following theorem:

Theorem 1.1 An integer n(≥ 2) is prime if and only if the polynomial congruence relation

(x+ a)n ≡ (xn + a) mod n

holds for some a coprime to n. Note that x is a free variable in natural numbers.

The theorem is an extension of Fermat’s Little Theorem.

1.2 Probabilistic Primality Testing

Probabilistic tests provide provable bounds on the probability of being fooled by a composite
number. Many popular primality tests are probabilistic tests.

These tests use, apart from the tested number n, some other numbers a which are chosen
at random from some sample space; the usual randomized primality tests never report a
prime number as composite, but it is possible for a composite number to be reported as
prime.

1-1

The probability of error can be reduced by repeating the test with several independently
chosen values of a; for two commonly used tests, for any composite n at least half the a’s
detect n’s compositeness, so k repetitions reduce the error probability to at most 2−k, which
can be made arbitrarily small by increasing k.

The basic structure of randomized primality tests is as follows:

1. Randomly pick a number a.

2. Check some equality (corresponding to the chosen test) involving a and the given
number n. If the equality fails to hold true, then n is a composite number, a is known
as a witness for the compositeness, and the test stops.

3. Repeat from step 1 until the required accuracy is achieved.

After one or more iterations, if n is not found to be a composite number, then it can be
declared “probably prime”.

1.2.1 Fermat’s Test

One of the most simplest probabilistic primality test is the “Fermat primality test”. This
test is based on the following theorem:

Theorem 1.2 If p is a prime number then for any integer a, not divisible by p

ap−1 ≡ 1 mod p

But If an−1 ≡ 1 mod n this does not imply n is a prime. For example, if n = 341 and a = 2
then 2341−1 ≡ 1 mod 341, but 341=11.31 is composite. The algorithm of that test is as
follows:

Algorithm 1 Fermat’s Primlaity Test

Input: An odd integer N
Output: ‘Yes’ or ‘No’
Steps:

1: Choose a random integer a such that 2 ≤ a ≤ N − 2.
2: if gcd(a,N) 6= 1 then
3: return (No) /*N is composite*/

4: s← aN−1 mod n
5: if s 6= 1 then
6: return (No) /*N is composite*/
7: else
8: return (Yes)/*N is prime*/

See that here when the algorithm tells composite it is composite but when says prime
it may prime with certain probability. To Get the answer with “good” probability we can
repeat the algorithm depending on how much “good” we want.

1-2

1.2.2 Miller-Rabin Test

Miller-Rabin primality Testing based on finding non-trivial square root of 1 modulo n. Since
we basically work with large primes we can assume primes to be odd.

If p is a prime and p > 2 then 1 and −1 are the only square roots of 1 modulo p, but
the converse is not true in general. So if we found any non trivial square root of 1 modulo
n, we can say n must be composite.

let us assume that n = 2k.α+ 1, where gcd(2, α) = 1 and k ≥ 1. Thus

an−1 ≡ (aα mod n)2
k

mod n

Let b0 = aα mod n, then

bi = b2i−1 mod n, i = 1, 2, . . . , k.

This implies that an−1 mod n may be calculated in k + 1 intermediate steps.
Basically in this algorithm we find either aα = 1 mod n or if ∃i ∈ 0, 1, . . . , k − 1 such

that a2
iα = −1 mod n. The algorithm is as follows:

Algorithm 2 Miller-Rabin Primlaity Test

Input: An odd integer n ≥ 3
Output: ‘Yes’ or ‘No’
Steps:

1: write n− 1 = 2ht, where h ≥ 1 and gcd(2, t) = 1
2: choose a random integer a such that 2 ≤ a ≤ n− 2.
3: b← at mod n
4: if b = 1 mod n then
5: return (Yes) /* The number is a prime integer */

6: for i=1 to h do
7: if b = −1 mod n then
8: return (Yes) /* The number is a prime integer */
9: else

10: b← b2 mod n
11: i← i+ 1

12: return (No) /* The number is a composite integer */

The test is very fast and requires no more than O(log2 n) multiplications (modn). Un-
fortunately, a number which passes the test is not necessarily prime.

Monier (1980) and Rabin (1980) have shown that a composite number passes the test
for at most 1/4 of the possible bases a. If N multiple independent tests are performed on a
composite number, then the probability that it passes each test is 1

4N
or less.

1-3

2 ElGamal Cryptosystem

Taher Elgamal first described the ElGamal Cryptosystem in an article published in the
proceedings of the CRYPTO ’84, a conference on the advances of cryptology.

The original public key system proposed by Diffie and Hellman requires interaction of
both parties to calculate a common private key. This poses problems if the cryptosystem
should be applied to communication systems where both parties are not able to interact in
reasonable time due to delays in transmission or unavailability of the receiving party

Thus ElGamal simplified the Diffie-Hellman key exchange algorithm by introducing a
random exponent a. This exponent is an replacement for the private exponent of the
receiving entity. Due to this simplification the algorithm can be used to encrypt in one
direction, without the necessity of the second party to take actively part. The key advance
here is that the algorithm can be used for encryption of electronic messages, which are
transmitted by the means of public store-and-forward services.

Before going into the algorithms let us see the following definition,

Definition 2.1 An element a of a finite field GF (q) is said to be a primitive element of
GF (q) if aq−1 = 1 mod q and ai 6= 1 mod q , ∀i = 2, 3, . . . , q − 2

ElGamal encryption consists of three components: the key generation, the encryption
algorithm and the decryption algorithm. Algorithms are described bellow.

2.1 Key Generation

The basic requirement for a cryptographic system is at least one key for symmetric algo-
rithms and two keys for asymmetric algorithms.

With ElGamal, only the receiver needs to create a key in advance and publish it. Fol-
lowing our naming scheme from above, we will now follow Bob through his procedure of
key generation.

Bob will use the following algorithm to generate his keypair:

Algorithm 3 ElGamal Key Generation

1: Generate a large prime p, consider Z∗p
2: Find a primitive element α of Z∗p
3: Chooses an a randomly from {1, . . ., p− 1}
4: Compute β ← αa

5: Publish { p ,α, β} as public key and
6: Keep a as private key

The public key now needs to be published using some dedicated keyserver or other
means, so that Alice is able to get hold of it.

2.2 Encryption

To encrypt a message M to Bob, Alice first needs to obtain his public key triplet (p, α, β)
from a key server or by receiving it from him via unencrypted electronic mail. There is no
security issue involved in this transmission, as the only secret part, a, is sent in β.

1-4

Since the core assumption of the ElGamal cryptosystem says that it is infeasible to
compute the discrete logarithm, this is safe.

For the encryption of the plaintext message x, Alice has to apply the following algorithm:

Algorithm 4 ElGamal Encryption

Input: a message x, p ,α , β
Output: cipher text (y1, y2)
Steps:

1: choose a random k from {1, . . ., q − 1},
2: y1 ← αk mod p
3: y2 ← xβk mod p
4: return (y1, y2)

Even if an attacker would listen to this transmission, and collect β of bob from a
keyserver, he would still not be able to derive αak.

2.3 Decryption

After receiving the encrypted message (y1, y2) and the randomized public key β, Bob has
to use the dncryption algorithm to be able to read the plaintext x. This algorithm is as
follows:

Algorithm 5 ElGamal Decryption

Input: a ciphertext (y1, y2) and a private key a
output: The message x
Steps:

1: x← y2.(y
α
1)−1 mod (p)

2: return x

2.4 Proof of correctness:

It can be easily seen that

Decα(y1, y2) = y2.(y
α
1)−1 mod (p)

= xβk.(αk)−a mod (p)

= x.αak.α−ak mod (p)

= x mod (p)

= x

So Bob can get back the message x from the encrypted ciphertext. Now both of them use
x as common symmetric key.

1-5

3 Knapsack Cryptosystem

knapsack cryptosystem was one of the earliest public key cryptosystems invented by Ralph
Merkle and Martin Hellman in 1978. Although this system, and several variants of it, were
broken in the early 1980’s, it is still worth studying for several reasons, not the least of
which is the elegance of its underlying mathematics.

In the Knapsack Cryptosystem based on subset sum problem which is an NP-complete
problem. But if the sequence of the set elements are in super increasing manner then it can
be find back the original sequence easily. This is the case with the subset sum problem, and
this permits the creation of a trapdoor.

Definition 3.1 A sequence of integers (w1, w2. . . . , wn) is said to form a super increasing
knapsack if

wi <
i−1∑
j=1

wj ,∀i = 2, 3, . . . , n

Key Generation, Encryption and Decryption algorithms of this cryptosystem are de-
scribed bellow.

3.1 Key Generation

In Knapsack cryptosystem the keys are two knapsacks. The public key is a ’hard’ knapsack
w′, and the private key is an ’easy’, or superincreasing, knapsack w, combined with two
additional numbers, a multiplier N and a modulus W . The multiplier and modulus can be
used to convert the superincreasing knapsack into the hard knapsack.

These same numbers are used to transform the sum of the subset of the hard knapsack
into the sum of the subset of the easy knapsack, which is a problem that is solvable in
polynomial time.

Algorithm 6 Knapsack Key Generation

1: Choose a super-increasing knapsack w = (w1, w2. . . . , wn).
2: Choose a no W such that W >

∑n
i=1wi.

3: Select a no N such that gcd(N,W) = 1.
4: Compute w′i = wi ∗N mod W , ∀i = 2, 3, . . . , n
5: Keep W , N and the sequence w as private key.
6: Publish the sequence w′ = (w′1, w

′
2. . . . , w

′
n) as public key

3.2 Encryption

To encrypt a message, a subset of the hard knapsack w′ is chosen by comparing it with
a set of bits (the plaintext) equal in length to the key. Each term in the public key that
corresponds to a 1 in the plaintext is an element of the subset w′i, while terms that corre-
sponding to 0 in the plaintext are ignored. The elements of this subset are added together
and the resulting sum is the ciphertext.

1-6

Algorithm 7 Knapsack Encryption

Input: a message block m = (b1b2 . . . bn)2 of length n, w′

Output: ciphertext C
Steps:

1: C ← 0
2: for i = 1 to n do
3: C ← C + biw

′
i

4: return C

3.3 Decryption

Decryption is possible because the multiplier and modulus used to transform the easy knap-
sack into the public key can also be used to transform the number representing the ciphertext
into the sum of the corresponding elements of the superincreasing knapsack. Then, using a
simple greedy algorithm, the easy knapsack can be solved using O(n) arithmetic operations,
which decrypts the message.

Algorithm 8 Knapsack Decryption

Input: Ciphertext C,N,W and w
Output: m = (b1b2 . . . bn)2
Steps:

1: C ′ ← CN−1 mod W
2: for i = n to 1 do
3: if C ′ > wi then
4: take bi ← 1
5: C ′ ← C ′ − wi
6: else
7: take bi ← 0

8: i← i− 1

9: return (b1b2 . . . bn)2

To prove the correctness of the algorithm It is enough to see that

DecN,W (C) = CN−1 mod W =
n∑
i=1

biw
′
iN
−1 mod W =

n∑
i=1

biwi mod W =
n∑
i=1

biwi

This system was very popular for a while since it is very fast to implement. However,
in the early 1980’s, Shamir, using Lenstra’s fast linear programming algorithm, was able to
peel away this disguise and obtain Bob’s superincreasing set.

Many other methods for disguising the super-increasing set have been tried, but most of
these have also been cracked. One method, known as the Chor-Rivest cryptosystem, uses
finite field manipulations and this is still considered to be secure.

1-7

