
Cryptography 24th August 2015

Lecture 10: DES and AES; Mode of Operations

Instructor: Goutam Paul Scribe: Ayan Das

1 DATA ENCRYPTION STANDARD (DES)

The Data Encryption Standard was once a predominant symmetric-key algorithm for the
encryption of electronic data. It was highly influential in the advancement of modern
cryptography in the academic world.Several key points regarding DES are:-
1. The Data Encryption Standard is the most controversial cipher in history.
2. Developed on behalf of the US Govt.
3. Based on previous IBM work.
4. Issued in 1976 as FIPS 46.
5. 56 bit key (64 in fact but there are check bits).
6. Generally has been first choice in commerce (e.g. banking)

2 How DES works

DES is an algorithm that takes a fixed-length string of plaintext bits and transforms it
through a series of complicated operations into another ciphertext bitstring of the same
length. In the case of DES, the block size is 64 bits. DES also uses a key to customize the
transformation, so that decryption can only be performed by those who know the particular
key used to encrypt. The key consists of 64 bits; however, only 56 of these are actually
used by the algorithm. Eight bits are used solely for checking parity, and are thereafter
discarded. Hence the effective key length is 56 bits.

10-1

2.1 The DES round

• Initial permutation simply permutes the 64 bits of input according to a specific pat-
tern. It has no security significance.

• A round takes the form given below. The round operates on the left and right 32 bit
words. The XOR is a bitwise XOR of 32 bit words.

10-2

2.2 Fiestel Structure (reversible)

Feistel Cipher is not a specific scheme of block cipher. It is a design model from which
many different block ciphers are derived. DES also use Feistel Cipher. A cryptographic
system based on Feistel cipher structure uses the same algorithm for both encryption and
decryption.

10-3

the right half of the block, R, goes through unchanged. But the left half, L, goes through
an operation that depends on R and the encryption key. First, we apply an encrypting
function f that takes two input the key K and R. The function produces the output f(R,K).
Then, we XOR the output of the mathematical function with L.
Once the last round is completed then the two sub blocks, R and L are concatenated in this
order to form the ciphertext block.

10-4

2.3 DES Decryption

Can apply same algorithm with subkeys in reverse order. Note final round is followed by
swap. Illustrated below for two rounds. (IP omitted for space reasons)

2.4 One Round of DES

This block represent one of 16 round.
standard des operation on 64 bit blocks.

10-5

10-6

2.5 DES: the S-boxes

10-7

Suppose we have an input of b1 b2 b3 b4 b5 b6 We interpret b1b6 as the binary for an
integer in the range 0..3. This value indexes the row to use..
We interpret b2b3 b4b5 as the binary for an integer in the range 0..15. This value indexes
the column to use..
Each entry is represented by a decimal and interpreted as a four bit binary. Thus 101010
corresponds to row 10=2, column 0101=5 and so indexes the value 13 = 1101

2.6 DES: Expansion

Each outer bit in a block of four influences the row used to do substitution in nearest neigh-
bouring block of four (with wrap-around interpretation as shown).

10-8

From the diagram it is clear that each of the outer bit is going to the next or privious neigh-
bour .So each 4 bits is converting to 6 bits.

2.7 DES: P-Permutation

As shown in the figure below permutation is happening according to lookup table.
For example 1st bit of the 1st four bit is moved to 16th position.

10-9

2.8 DES:Keys

• Initial Key = 64 bit (k1k2k64)

• Last bit of every byte is the Parity bit.

• Such that
∑8

i=1 k8k+i= 1 mod 2

• Possible Keys = 256 ’ ’ 7.2 x 1016

• Example Key in Hex : 1334 5779 9BBC DFF1

10-10

2.9 Key Schedule

The 56 bit key is split into two 28 bit halves.
Each half is subject to a cyclic shift of 1 or 2 bits in each round as follows (total 16 rounds).
1 1 2 2 2 2 2 2
1 2 2 2 2 2 2 1
After the shifts a sub-key is extracted from the resulting halves (details omitted)..
This is repeated for each round.

10-11

2.10 DES Semi-weak Keys

The block cipher DES has a few specific keys termed ”weak keys” and ”semi-weak keys”.
These are keys that cause the encryption mode of DES to act identically to the decryption
mode of DES (albeit potentially that of a different key).

• Keys which cause the encryption mode of DES to act identically to the decryption
mode of DES (potentially that of a different key).

• Ek1(Ek2(M)) = M

• 6 pairs of semi-weak keys

2.11 DES Cryptanalysis

Differential cryptanalysis (Biham and Shamir, 1991)

• 247 (plaintext, ciphertext) pairs.

• IBM (presumably from the NSA) knew about the method of attack 16 or more years
before it was discovered and published by leading cryptography academics.

Linear cryptanalysis (Matsui, 1993).

• Reduces no of operations from 256 (brute force) to around 243

Difference between two :-

• With differential cryptanalysis, the known plaintext/ciphertext pairs must be orga-
nized in pairs where both plaintexts differ by a specific difference (”difference” being a
XOR, a subtraction... whatever works well algebraically with the algorithm at hand;
for DES, this is XOR). The ”approximation” is that this input difference will yield
another specific difference on the output with a probability which is somewhat higher
than what could be obtained with pure randomness, and the exact difference which
will most probably appear depends on some of the key bits. Successful differential
cryptanalysis normally requires chosen plaintext/ciphertext pairs (the attacker gets
to choose the plaintexts or the ciphertexts).

• With linear cryptanalysis, the approximation is a linear formula (i.e. a bunch of XOR
on bits) which links together some input bits, some output bits and some key bits,
with a probability somewhat higher than what could be obtained with pure random.
This ”linear formula” works best (i.e. is fulfilled most often) when the hypothesis on
the involved key bits is correct, so the analysis yields a few key bits.

• The most salient difference between linear and differential cryptanalysis is the known/chosen
plaintext duality. For linear cryptanalysis, known random plaintexts are sufficient, but
differential cryptanalysis requires chosen plaintexts, which, depending on the context,
may or may not be a significant problem for the attacker.

10-12

2.12 DES Brute Force Attack

• Diffie and Hellman proposed a key search machine that would be able to break DES
at a cost of doller 20M (1977).

• Detailed hardware design for key search machine by Wiener (1993).

• Cracked in 3 days (1998): Electronic Frontier Foundation, using purpose built hard-
ware:.

• Less than 1 year to build.

• Less than doller 250,000.

• Now 2 hours on an FPGA.

2.13 DES Variants

• Triple DES = TDES.

In cryptography, Triple DES (3DES) is the common name for the Triple Data Encryp-
tion Algorithm (TDEA or Triple DEA) symmetric-key block cipher, which applies the
Data Encryption Standard (DES) cipher algorithm three times to each data block.

• TDEA : NIST, Recommendation for the Triple Data Encryption Algorithm (TDEA)
Block Cipher.

• There are variations of TDES which use
Two different keys (2TDES) and
Three different keys (3TDES)

Note the difference between double DES and 2 key triple DES. Double DES is the operation
DES2(P):=DESk2(DESk1(P)), ie. two DES encryptions with two different keys. 2-key
3DES is the operation 2KEY-DES3(P):=DESk1(DES−1k2 (DESk1(P))), ie. 3DES where
k1=k3.

10-13

2.14 Triple DES

2.15 Digression: Why not 2-DES?

• Suppose we have DES applied twice.
i.e. C = Ek2(Ek1(M)) k1, k2 of size n = 56 bits.

• Apparently the security is 112 bits.

• Brute force requires:

10-14

Space : O(1)
Encryptions : O(22n)

• Or is it so?

2.16 Meet in the middle attack

• Known plaintext attack.
C = Ek2(Ek1(M)) : C and M known.

• Store C = Ek(M) for all possible k.

• Find P = Dk(C) for all possible k till it matches with some C.

• Attack requires :
Space : O(2n) Encryptions : O(2n+1)

10-15

2.17 3TDES

10-16

2.18 2TDES

10-17

2.19 DES-EDE

• C = EK1(DK2(EK1(P)))

• Because encrypt and decrypt equivalent in security

• if K1=K2 then can work with single DES

• Standardized in ANSI X9.17 and ISO 8732

10-18

• No current known practical attacks

• 3 Keys version used in PGP, S/MIME

3 ADVANCED ENCRYPTION STANDARD (AES)

AES (acronym of Advanced Encryption Standard) is a symmetric encryption algorithm.
The algorithm was developed by two Belgian cryptographer Joan Daemen and Vincent
Rijmen. AES was designed to be efficient in both hardware and software.

3.1 History

• NIST wanted replacement for DES : 1997

• Requirements :-
Block length : 128 bits
Key lengths : 128, 192, 256 bits
Available on Royalty free basis world-wide.

• 21 submissions : June 1998

• 15 met design criteria : AES Candidates
1st AES Candidates Conference : Aug 1998

• March 1999 :
2nd AES Candidates Conference

• August 1999 :
5 Finalists

• Finalists :
MARS, RC6, Rijndael, Serpent, Twofish

• April 2000
3rd AES Candidates Conference

• October 2000
Rijndael Selected !!!

10-19

• Feb 2001 :
Draft FIPS for public review and comment

• Nov 2001 :
Adoption as a standard

• December 2001 :
Published as FIPS 197 in Federal Register

• Open and with International Flavor

• Authors from 12 different countries !

• Rijndael : Daemen and Rijnmen
Belgian researchers

• 2nd Candiadates Conference held in Rome, Italy.

3.2 Evaluation Criteria of Candidates

• Security Absolutely essential Not secure == not to be considered further

• Cost Speed and memory for various implementations (Software, Hardware, Smart-
Cards)

• Algorithm and implementation characteristics Flexibility and simplicity of the algo-
rithm

3.3 AES Details

• Key sizes supported: 128, 192, 256 bits.

• Plain text block = 128 bits = 16 bytes.

• Cipher text block = 128 bits = 16 bytes.

• No of rounds Depend on key size

10-20

3.4 No of Rounds

10-21

3.5 State Array

Read 16 bytes plain-text, arrange in 4 x 4 matrix in column major form (State).

3.6 AES Description

• Initialize state with plaintext x, perform add-round-key, xor round key with state

• Next r-1 rounds: sub-bytes, shift-rows, mix-columns, add-round-key

• Sub-bytes, shift-rows, add-round-key

• Generates ciphertext y

10-22

• Apply a Round transformation on state

• Total no of rounds : Already defined

• Each round has a Round Key, which is generated from the secret key

• A Key schedule is used to generate the Round Keys

3.7 Round Transformation

Each Round has 4 transformations :-
1. ByteSub
2. ShiftRow
3. MixColumn
4. AddRoundKey

3.8 One Round of Rijndael

Round(State, RoundKey){
ByteSub(State);
ShiftRow(State);
MixColumn(State);
AddRoundKey(State,RoundKey);
}

3.9 ByteSub Transformation

• All 32 bytes of State are replaced by their S-box values.

• S-box constructed in 2 steps :
x maps to x−1 (with respect to the Field generated by an irreducible polynomial).
Then apply an affine transformation Ax+b.

3.10 Addition in GF(28)

• Given 2 polynomials in GF(28)

• Addition is obtained by the coefficients summed modulo 2

• Example :
Hex(57) = bin(01010111) = poly(x6 + x4 + x2 + x + 1)
Hex(83) = bin(10000011) = poly(x7+x+1)
57 + 83 = D4
(x6 + x4 + x2 + x + 1) + (x7 + x + 1) = (x7 + x6 + x4 + x2)

10-23

3.11 Multiplication in GF(28)

• Usual multiplication of polynomials modulo an Irreducible polynomial

• Example : Irreducible polynomial = 11B = x8 + x4 + x3 + x + 1
57 * 83 = C1

3.12 Affine Transformation

3.13 ByteSub Transformation

• The steps may look complicated.

10-24

• For programming the transformation, you dont need to know so much maths.

• AES S-Box Table is available.

• Byte array of 256 locations.

3.14 ShiftRow Transformation

• Rows of the State are shifted by some bytes in a cyclic order.

• Row i shifted by Ci bytes.

• C1 = 0, C2 = 1, C3 = 2, C4 = 3.

3.15 MixColumn Transformation

• All 4 columns of the State are changed to new columns.

• Each column (cubic polynomial) is multiplied by c(x) and then modulo (x4+1) is
taken.

• c(x) = 03 x3 + 01 x2+ 01 x + 02.

3.16 AddRoundKey Transformation

The State is XORed with the Round Key.

3.17 Inverse of a Round of Rijndael

InvRound(State, RoundKey)
AddRoundKey(State,RoundKey);
InvMixColumn(State);
InvShiftRow(State);
InvByteSub(State);

3.18 InvByteSub Transformation

• Each byte of the State is replaced by its Inverse S-box.

• InvS-box(x) = (i) x→ A−1(x + b) (ii) x⇒ x− 1

• Inverse S-box(x) = y if S-box(y) = x

10-25

3.19 InvMixColumn Transformation

• All 4 columns of the State are changed to new columns.

• Each column (cubic polynomial) is multiplied by d(x) and then modulo (x4+1) is
taken.

• d(x) = 0B x3+ 0D x2+ 09 x + 0E.

• (c(x) . d(x) = 1)

3.20 InvShiftRow

• Undoes the effect of ShiftRow.

• Easy to figure out.

• Rows of the State are shifted by some bytes in a cyclic order.

• Row i shifted by Ci bytes.

• C ′1 = 0, C ′2 = 3, C ′3 = 2, C ′4 = 1.

3.21 Key Schedule of Rijndael

• 32 byte Cipher Key expanded to 32*15 bytes.

• 14 Rounds + 1 Initial XOR operation requires 15 Round Keys.

• Chunks of 32 bytes from the Expanded Key form the Round Keys.

4 Mode of Operation

4.1 What is Initialization vector

An initialization vector (IV) or starting variable (SV)[5] is a block of bits that is used by
several modes to randomize the encryption and hence to produce distinct ciphertexts even
if the same plaintext is encrypted multiple times, without the need for a slower re-keying
process.

4.2 Padding

A block cipher works on units of a fixed size (known as a block size), but messages come in
a variety of lengths. So some modes (namely ECB and CBC) require that the final block
be padded before encryption. Several padding schemes exist. The simplest is to add null
bytes to the plaintext to bring its length up to a multiple of the block size.

10-26

4.3 Electronic codebook mode

In this mode The message is divided into blocks, and each block is encrypted separately.
The disadvantage of this method is that identical plaintext blocks are encrypted into iden-
tical ciphertext blocks; thus, it does not hide data patterns well. In some senses, it doesn’t
provide serious message confidentiality, and it is not recommended for use in cryptographic
protocols at all.

4.4 Cipher Block Chaining

In CBC mode, each block of plaintext is XORed with the previous ciphertext block before
being encrypted. This way, each ciphertext block depends on all plaintext blocks processed
up to that point. To make each message unique, The First block is IV.

10-27

The formula for CBC encryption is :
Ci = Ek(Pi ⊕ Ci−1) where Co = IV
and the formula for decryption is:
Pi = Dk(Ci)⊕ Ci−1 where Co = IV
CBC has been the most commonly used mode of operation. Its main drawbacks are that
encryption is sequential (i.e., it cannot be parallelized), and that the message must be
padded to a multiple of the cipher block size. One way to handle this last issue is through
the method known as ciphertext stealing. Note that a one-bit change in a plaintext or IV
affects all following ciphertext blocks

10-28

4.5 Cipher Feedback

The Cipher Feedback (CFB) mode, a close relative of CBC, makes a block cipher into a
self-synchronizing stream cipher. Operation is very similar; in particular, CFB decryption
is almost identical to CBC encryption performed in reverse:

Ci = Ek(Ci−1)⊕ Pi

Pi = Dk(Ci−1)⊕ Ci where Co = IV
By definition of self-synchronising cipher, if part of the ciphertext is lost (e.g. due to
transmission errors), then receiver will lose only some part of the original message (garbled
content), and should be able to continue correct decryption after processing some amount
of input data. This simplest way of using CFB described above is not any more self-

10-29

synchronizing than other cipher modes like CBC. Only if a whole blocksize of ciphertext is
lost both CBC and CFB will synchronize.but losing only a single byte or bit will permanently
throw off decryption. To be able to synchronize after the loss of only a single byte or bit, a
single byte or bit must be encrypted at a time. CFB can be used this way when combined
with a shift register as the input for the block cipher

4.6 Output Feedback

The Output Feedback (OFB) mode makes a block cipher into a synchronous stream cipher.
It generates keystream blocks, which are then XORed with the plaintext blocks to get the
ciphertext. Just as with other stream ciphers, flipping a bit in the ciphertext produces a
flipped bit in the plaintext at the same location. This property allows many error correcting
codes to function normally even when applied before encryption. Because of the symmetry
of the XOR operation, encryption and decryption are exactly the same:
Cj = Pj ⊕Oi

Pj = Cj ⊕Oi

Oj = Ek(Ij)
Ij = Oj−1
I0 = IV

10-30

Each output feedback block cipher operation depends on all previous ones, and so cannot
be performed in parallel. However, because the plaintext or ciphertext is only used for the
final XOR, the block cipher operations may be performed in advance, allowing the final
step to be performed in parallel once the plaintext or ciphertext is available. It is possible
to obtain an OFB mode keystream by using CBC mode with a constant string of zeroes as
input. This can be useful, because it allows the usage of fast hardware implementations of
CBC mode for OFB mode encryption. Using OFB mode with a partial block as feedback
like CFB mode reduces the average cycle length by a factor of 232 or more.

10-31

