Quantum Information Processing and Quantum Computing 06/11/2015

Lecture 8: Quantum Computing; Deutsch and Deutsch-Jozsa Algorithms

Instructor: Goutam Paul Scribe: Arka Rai Choudhuri

1 Introduction

Consider the evaluation of a boolean function f at the point z € {0, 1}, i.e. we want f(x)
where

f:4{0,1}" — {0,1}

If we can implement any such function f, then we can implement any algorithm. This
follows from the fact that any algorithm at the lowest level is just a sequence of boolean
functions. As with the classical domain, we are not bothered with how f is implemented.

In general f is not reversible, specifically when there is a domain reduction. The natural
question to ask is how one could make such a function reversible.

To illustrate this, consider f(a,b) = a @ b. From the truth table we observe that it is
not possible to directly revert the function. Instead, we output some addition information
(variable @ in this case), as shown below to construct a “Reversible XOR”.

al|bladdb|a
0|0 0 0
01 1 0
110 1 1
1)1 0 1

@ =" Reversible |~ ¢

i XOR

——a®b

We state below a theorem, without proof, which will be used extensively

Theorem 1.1 For any boolean function f, 3 a unitary transformation Uy such that

[2)|y) = |x)ly ® f(x)) (1)
for x € {0,1}" and y € {0,1}. [ ]

In the quantum domain, for any f, we assume Uy exists and take this to be a black box.
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2 Deutsch Algorithm

Consider a 1-variable boolean function f. We know that there are 22" = 4 such possible
functions. We list them out below,

x| folz) | filz) | folz) | f3(2)
0 0 0 1 1
1 0 1 0 1

Suppose we are interested in determining which of the two alternatives hold:
1. f is constant, or
2. f is balanced.

A function f is said to be balanced if each output appears equal number of times. Specifically,
from the table above, fy and f3 are constant, while f; and f> are balanced.

In the classical domain, we would require exactly 2 queries to conclude if it were balanced
or constant. We now consider this problem in the quantum domain in an attempt to improve
on the number of queries.

To this end, we present the Deutsch Algorithm in the figure below.

|0) —» —> Measurement

71 Us . di
1) " H | discard

Note that the actual query is |0), while |1) is an auxiliary bit.
The joint input state |w) to Uy is,

_ o) +11) o) — 1)
uy = 2 o S
= £(100) — 01} + [10) ~11))

Before we proceed, we state a couple of rules,
Rule 1: Uglay) — |a)ly & f(2)) |

[Rule 2: [y) — [13y) = (-1)*(10) ~ 1))
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The first rule follows from the theorem stated earlier, and the second rule can easily be
verified to be true. Now,

1

Urlw) = 5(Uy|00) — Us[01) + Uy |10) — Ug[11))

= 5(10)[£(0)) = [0)[1 @ F(O)) + [)[f(1)) = D1 @ f(1)))
(10)(1£(0)) = L@ f£(0))) + [L(IF(1)) = [L & f(1))))

= 2 (10) [=17@q10) — )] +11) [0 @ g0y ~ 1))

N~ N~ N

- \}5 <(—1)f<0>|o> + (—1)f<1>|1>) ® \}5 (10) = [1))
= |w1) ® |wg)

Here each |w;) is a 1-qubit state. In our diagram for the algorithm, we’re discarding |wsa)
and only considering |w;). Now,

Hhoy) = 1 | 5 ((-)/Ol0) + (-1 )

_ (C1fO Uﬁ (10 + (_1)f(0)®f(1),1>)} @)

We now state our third rule, which can easily be verified to be true.

. 0)+(=1)¥|1)
Rule 3: Hly) — =

Note, a consequence of this rule

p (DY

This follows from the fact that the Hadamard transform applied twice to the state returns
the original state.

In Eq.(2), we take y to be f(0) & f(1).
Hlw) = (-1)'O1£(0) @ f(1))
We now perform a measurement in the {|0),|1)} basis. Based on the measurement,
e if |0) is measured, f is constant.
e if |1) is measured, f is balanced.

It is important to note that although only a single query is made, we are essentially
querying the superposition of |0) and |1) using the Hadamard gate.
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3 Deutsch-Jozsa Algorithm

We now extend the problem discussed in the previous section. Here the function f, is
defined as

f:4{0,1}" — {0,1}

It is guaranteed that f is either balanced or constant, and we would like to determine the
same. In the classical setting, we would require at least %- + 1 queries. As before, in an
attempt to improve this, we consider the problem in the quantum setting, and describe the
Deutsch-Jozsa Algorithm using the diagram below,

|0™) - HOn - H®n Measurement
f

1) % — discard

Here, H®" is defined as

H®|zy - x,) = H|lz1) @ - @ H|xp) (3)
Let us represent the input state as,
|tho) = 10")]1) (4)

After the Hadamard transform on |0") and |1), we get the input to Uy to be,

)= >

xe{0,1}m

B

Now, applying Uy, similar to before,

(=1)7@|z) T]0) — [1)
|the) = Ugln) = (6)
2 fI¥1 xe%}n /on |: \/§ :|

For ease of notation, we expand the Hadamard transform on a state |z).

1
H®|2y - 2) = ST (cpymeteaaly ) (7)

n
21,22, ,2n

This can be re-written as

®n’$ \/7 Z a:Z| (8)

z€{0,1}n

where z - z is the bitwise inner product of x and z, modulo 2.
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As seen from the algorithm, we drop the last bit from |¢)2) to obtain |¢)3). Applying the
Hadamard transform on |13), using the notations discussed, we get,

(-)/@ (=D"*]y)
|tha) = Hlts) = = — = (9)

_ (=1)f@rey)y)
- Z Z on <1O)
z€{0,1}" ye{0,1}"
Now, we look at the amplitude associated with the state |0™), given by
(—1)f =)
P T
z€{0,1}"

Hence the probability associated with this is

2
(—1)f@)
> o
ze{0,1}m
As is easily seen, the probability is 1 if f is constant. Hence, we get
e f is constant if |0") is measured.

e f is balanced otherwise.
Again, with just one query, we were able to determine if the function f was constant or
balanced.
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