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1 Hilbert Space

A state of a particle or a system is given by a vector in a Hilbert space. Before we jump into
an informal definition of a Hilbert space, we discuss some extensions (additional features)
of the generic vector space. The extensions are:

• inner product space: introduction of the concept of angles between vectors.

• normed vector space: introduction of the length of a vector.

• metric space: introduction of distance between vectors.

It is interesting to note that one can convert from the inner product space to the normed
product space by defining the norm to be the inner product of a vector with itself.

Informally, a Hilbert space is a special kind of vector space that, in addition to all the
usual rules of the vector spaces, is also endowed with the inner product.
More formally, from

Definition 1.1 A Hilbert space H is a vector space endowed with an inner product and
associated norm and metric, such that every Cauchy sequence in H has a limit in H.

In the special case where Hilbert space has a finite dimension, it is isomorphic to a complex
vector space.

Theorem 1.2 (Cauchy-Schwarz inequality)

|〈u|v〉|2 ≤ ||u||2 ||v||2

Proof. Let

|z〉 = |u〉 − 〈v|u〉
〈v|v〉

|v〉

We take the inner product with |v〉, we get

〈v|z〉 = 〈v|u〉 − 〈v|u〉
〈v|v〉

〈v|v〉 = 0

Hence, |z〉 is perpendicular to |v〉.
Now,

〈z|z〉 ≥ 0

Hence, from the orthogonality of |v〉 and |v〉, we get

〈z|u〉 ≥ 0
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〈u|u〉 − 〈v|u〉
〈v|v〉

〈v|u〉 ≥ 0

||u||2 − |〈v|u〉|
2

||v||2
≥ 0

||u||2 ||v||2 ≥ |〈v|u〉|2

Hence proved. �

Before we proceed we would like to clarify some notations. |ψ1〉 and |ψ2〉 are both column
vectors. 〈ψ1| is a row vector that is the conjugate transpose of |ψ1〉. While 〈ψ1|ψ2〉 is a
row vector multiplied by a column vector resulting in a value, |ψ1〉〈ψ2| is a column vector
multiplied by a row vector and hence gives a matrix.

Theorem 1.3 (Completeness) For any state |ψ〉,

|ψ〉〈ψ| = I

Proof.

∀|ψ〉, |ψ〉〈ψ| · |ψ〉 = |ψ〉〈ψ|ψ〉 (associativity)

= |ψ〉 (since norm is 1)

= I|ψ〉
∴ |ψ〉〈ψ| = I

�

2 Operators

For quantum, these are restricted to Hermitian (self-adjoint) matrices.

A |ψ1〉 = |ψ2〉

Here, A is the operator. A matrix is self-adjoint when

A = A†

where A† is the conjugate transpose of A.

Theorem 2.1 Eigenvalues of hermitian matrices are real.

Proof. Let A be a hermitian matrix

A |ψ〉 = λ|ψ〉

where λ and |ψ〉 are the eigenvalue and eigenvector respectively.
Now,

〈ψ|Aψ〉 = 〈ψ|λψ〉
= λ〈ψ|ψ〉
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We know that 〈ψ|ψ〉 is real. Now, if we can show 〈ψ|Aψ〉 to be real, it would ensure λ is
real. To show a value is real, we need to show that the complex conjugate is the same as
the original value. Hence,

〈ψ|Aψ〉∗ = 〈Aψ|ψ〉 (from definition)

= 〈ψ|A†ψ〉 (from definition)

= 〈ψ|Aψ〉 (A† = A)

∴ λ is real. �

Theorem 2.2 Eigenvectors of hermitian matrices form an orthonormal basis.

Proof. Assume for simplicity that all the eigenvalues are distinct.
Let λ1, · · · , λn be the eigenvalues and |ψ1〉, · · · , |ψn〉 the corresponding eigenvectors. And
let A be the given hermitian matrix.
We note that the eigenvectors represent only the direction, and hence can simply be nor-
malized to get unit length. So, our problem of showing orthonormality reduces to showing
orthogonality. Hence, we need to show

〈ψi|ψj〉 = 0 ∀i 6= j

〈ψi|Aψj〉 = 〈ψi|λjψj〉 = λj〈ψi|ψj〉 (1)

〈ψi|Aψj〉 = 〈A†ψi|ψj〉 = 〈Aψi|ψj〉 = λi〈ψi|ψj〉 (2)

Subtracting 2 from 1, we get

0 = (λj − λi)〈ψi|ψj〉 ∀i 6= j

and since we assumed the eigenvalues to be distinct, we get

〈ψi|ψj〉 = 0

�

An immediate corollary due to the orthogonality is the following,

Corollary 2.3 Any state can be written as a linear combination of the Eigenstates of any
hermitian operator in the same Hilbert space (Spectral decomposition).

Definition 2.4 An operator A is diagonalizable if ∃ a self adjoint operator A′ such that

∀|ψ〉 A|ψ〉 = A′|ψ〉

Theorem 2.5 Any self-adjoint operator is diagonalizable.
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3 Projectors

|ψ〉

|φ〉

Projection of |φ〉 into |ψ〉 is given by

P|ψ〉|φ〉 = 〈ψ|φ〉|ψ〉
= |ψ〉〈ψ|φ〉
= (|ψ〉〈ψ|)|φ〉

The first to second equation was possible because 〈ψ|φ〉 is a scalar. And hence the projector
is defined as

P|ψ〉
def
= |ψ〉〈ψ|

We look at projectors onto a subspace spanned by vectors |ψ1〉, · · · , |ψk〉. The is a k-
dimensional subspace.
Let the Hilbert space be of n-dimension, and hence we’re projecting n-dimension onto k-
dimension. The projector here is defined as,

P =
k∑
i=1

|ψi〉〈ψi|

Corollary 3.1
P 2
|ψ〉 = P|ψ〉

4 Tensor Product

Given two matrices Am×m = [aij ] and Bn×n = [bij ], the tensor product is defined as

A⊗B =


a11B a12B a13B . . . a1mB
a21B a22B a23B . . . a2mB

...
...

...
. . .

...
am1B am2B am3B . . . ammB


(m×n)×(m×n)

where each element of the above array is a sub-matrix of size n× n.

Postulate 4.1 If particle 1 has a state |ψ1〉 and particle 2 has a state |ψ2〉, then the joint
state of the two particles is given by |ψ1〉 ⊗ |ψ2〉

Result 4.2 The tensor product of the basis vectors of two Hilbert spaces H1 and H2 of
dimension m and n respectively forms a basis vector in another Hilbert space of dimension
mn denoted by H1 ⊗H2

2-4



Example 4.3 Consider the computational basis {|0〉, |1〉} in 2-dimension. Let

|ψ1〉 = α1|0〉+ β1|1〉

and,
|ψ2〉 = α2|0〉+ β2|1〉

Then the joint state is,

|ψ1〉 ⊗ |ψ2〉 = (α1|0〉+ β1|1〉)⊗ (α2|0〉+ β2|1〉)
= α1α2(|0〉 ⊗ |0〉) + α1β2(|0〉 ⊗ |1〉) +

β1α2(|1〉 ⊗ |0〉) + β1β2(|1〉 ⊗ |1〉)
= α1α2|00〉+ α1β2|01〉+ β1α2|10〉+ β1β2|11〉

where |ij〉 is the shorthand notation for |i〉 ⊗ |j〉.

|00〉 = |0〉 ⊗ |0〉 =

(
1
0

)
⊗
(

1
0

)

=

1

(
1
0

)
0

(
1
0

)
 =


1
0
0
0


5 Spectral decomposition of an operator

Previously we’ve done the spectral decomposition of a vector space, and now we move on
to operators. Before we proceed, we will first discuss what a normal operator is.

Definition 5.1 A is normal if and only if

A†A = AA†

Examples of normal operators are Hermitian operators and unitary operators.

Theorem 5.2 An operator A has a diagonal representation

A =

n∑
i=1

λi|i〉〈i|

where λi’s are the eigenvalues and |i〉’s are the corresponding eigenstates of A, if and only
if A is normal.

6 Generalized version of postulate 2

Any measurement is a collection of operators {Mi} acting on the state space such that after
the measurement of a state |ψ〉, outcome i occurs with probability

〈ψ|M †i |Mi|ψ〉
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and if the output is i, then the post measurement state becomes:

Mi|ψ〉√
〈ψ|M †i |Mi|ψ〉

The denominator of

√
〈ψ|M †i |Mi|ψ〉 is added to normalize the new state.

One should also note that the operators {Mi} must satisfy the completeness equation∑
i

M †iMi = I

|ψ〉 → {M1,M2, · · · ,Ml}
Measurement

Pr(i)=〈ψ|M†
i |Mi|ψ〉−−−−−−−−−−−−→ Mi|ψ〉

Output i

Hence the observed measurement i changes the state to Mi|ψ〉 and the probability of it
being i is Pr(i)
Special Case::
Measuring an observable A =

∑
i=1 λi|i〉〈i|. By axiomatic definition, A is Hermitian, and

hence normal. And as seen previously, A thus has a spectral decomposition.
Then,

Mi = |i〉〈i| = Pi (say)

These are nothing but projectors onto the corresponding eigenstates.
Note: Because Pi is Hermitian,

M †iMi = P †i Pi = PiPi = P 2
i = Pi

∴ the outcome of the measurement is λi and the state post measurement is

Pi|ψ〉√
〈ψ|Pi|ψ〉

with probability
〈ψ|Pi|ψ〉

This special case is called the projective measurement.
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