Cryptography

Lecture 8: LFSR II; Boolean Functions

Lecturer: Goutam Paul

Scribe: Shion Samadder Chaudhury

3 Sep 2015

In this lecture we continue our study of the LFSR, how to introduce non-linearity in the system and we look at some examples of cryptographic properties of Boolean functions.

Figure 8.1: An n- bit LFSR

8.1 Characteristic polynomial and Minimal polynomial

Definition 8.1 For the n-bit LFSR as in the figure above the polynomial : $c(x) = x^n + c_{n-1}x^{n-1} + ... + c_1x + 1$ is called the connection polynomial of the LFSR.

Definition 8.2 Let $\vec{s} = (s_0, s_1, s_2, ...)$ be an LFSR sequence. Then the <u>shift operator</u> L is defined as : $L(\vec{s}) := (s_1, s_2, ...)$.

Using composition of the shift operators we can talk about powers L, L^2, L^3 ... and can consider polynomials of shift operators.

Definition 8.3 A polynomial f such that $f(L)\vec{s} = \vec{0}$ is called a characteristic polynomial of the sequence \vec{s} .

Definition 8.4 The characteristic polynomial \vec{s} of minimum degree is called the minimal polynomial of \vec{s} .

Now we have the following propositions.

Proposition 8.5 If \vec{s} is a sequence over a finite field F, the connection polynomial c(x) of the LFSR is a minimal polynomial of \vec{s} if c(x) is irreducible.

We note that

• If \vec{s} has period r, then $x^r - 1$ is a characteristic polynomial of \vec{s} .

Definition 8.6 The period of a polynomial $g(x) \in F_p[x]$ is defined as the minimum integer e such that $g(x)|x^e - 1$.

Proposition 8.7 If m(x) is the minimal polynomial of a sequence \vec{s} , then $period(m(x)) = period(\vec{s})$.

- From 8.5 and 8.7, if we want to maximize the period, then $period(\vec{s}) = p^n 1$.
- Hence from 8.7 we have $period(m(x)) = period(\vec{s})$.
- So, from 8.5, $period(c(x)) = p^n 1$ if the sequence is produced from an LFSR of connection polynomial c(x).
- Definition 8.6 implies that the minimum integer e such that $c(x)|x^e-1$ is $e = p^n 1$. Such a polynomial is called a primitive polynomial.

From the above discussion, to choose a connection we need to choose a primitive polynomial.

8.2 Problem of LFSR

LFSR is safe for ciphertext only attacks. Suppose we have an LFSR sequence : $s_0, s_1, s_2, ...$ We XOR with the message bits to get the ciphertext. Suppose we get a portion of the text. Then we have the following system of equations.

 $s_n = a_0 s_0 + a_1 s_1 + \dots + a_{n-1} s_{n-1}$ $s_{n+1} = a_0 s_1 + a_1 s_2 + \dots + a_{n-1} s_n$ \dots $s_{2n-1} = a_0 s_{n-1} + a_1 s_n + \dots + a_{n-1} s_{2n-2}$

Treating the a_i 's as unknowns, we get a system of n equations in n unknowns given by :

$\begin{pmatrix} s_n \end{pmatrix}$		$\left(\begin{array}{c} s_0 \end{array} \right)$	s_1				s_{n-1}	$\begin{pmatrix} a_0 \end{pmatrix}$
s_{n+1}	=	s_1	s_2	•	•	•	s_n	a_1
			•	·	·	·		
· ·			•	•	·	·		
			•	·	·	·	.)	
$\left\langle s_{2n-1} \right\rangle$		$\langle s_{n-1} \rangle$	s_{n-2}				s_{2n-2}]	$\left(a_{n-1} \right)$

Since the $n \times n$ matrix on the R.H.S is symmetric, it is invertible. So the a_i 's, i.e the connections are completely determined which is the attacker's advantage.

Definition 8.8 The <u>Linear Complexity</u> of a sequence is the minimum length LFSR that produces the sequence.

If a sequence has length n, then its linear complexity $\leq \frac{n}{2}$.

From the above discussion, purely linear feedback is not good. Hence we introduce non-linearity in the system. We shall formally define non-linearity of a Boolean function in the next section.

8.2.1 Ways to introduce non-linearity

There are three models to introduce non-linearity in the system.

- Non-linear feedback model.
- Non-linear combiner model.
- Non-linear filter generator model.
- 1. Non-linear feedback :- We make the feedback a non-linear Boolean function.
- 2. Non-linear combiner :- In the following diagram $f: \{0,1\}^m \to \{0,1\}$ is a non-linear combining function.

Figure 8.2: Non-linear combiner function

3. Non-linear filter generator :- This is described in the following figure. As before $f : \{0, 1\}^m \to \{0, 1\}$ is a non-linear Boolean function.

Figure 8.3: Non-linear combiner function

8.3 Nonlinearity

Definition 8.9 A Boolean function $f : \{0,1\}^n \to \{0,1\}$ is called <u>linear</u> iff $\exists a_1, a_2, ..., a_n \in \{0,1\}$ such that $f(x_1, x_2, ..., x_n) = a_1x_1 \oplus a_2x_2 \oplus ... \oplus a_nx_n$.

Definition 8.10 A Boolean function $f : \{0,1\}^n \to \{0,1\}$ is called <u>affine</u> iff $\exists a_0, a_1, ..., a_n \in \{0,1\}$ such that $f(x_1, x_2, ..., x_n) = a_0 \oplus a_1 x_1 \oplus a_2 x_2 \oplus ... \oplus a_n x_n$.

So if $a_0 = 1$, then f is the complement of a Boolean function.

Definition 8.11 A Boolean function is said to be <u>non-linear</u> if it is not affine.

The total number of *n*-variable Boolean functions is 2^{2^n} . From the above definition, the number of affine functions is 2^{n+1} . Hence the number of non-linear Boolean functions is $2^{2^n} - 2^{n+1}$.

Definition 8.12 The distance between two n-variable Boolean functions f_1 and f_2 , denoted by $d(f_1, f_2)$, is defined as the number of the Boolean vectors \vec{x} such that $f_1(\vec{x}) \neq f_2(\vec{x})$. Equivalently it is defined as the number of 1's in $f_1 \oplus f_2$.

Clearly d as defined above is a metric.

• Let \mathcal{A}_n denote the set of all *n*-variable affine Boolean functions.

Definition 8.13 The non-linearity of an n-variable Boolean function f is defined as

$$nl(f) := \min_{g \in \mathcal{A}_n} d(f,g)$$

8.4 Cryptographic properties of Boolean functions

Some of the cryptographic properties of Boolean functions are listed below.

- Non-linearity
- Balancedness
- Correlation Immunity
- Algebraic Immunity
- ... etc. ...