
Cryptography 3 Sep 2015

Lecture 8: LFSR II; Boolean Functions
Lecturer: Goutam Paul Scribe: Shion Samadder Chaudhury

In this lecture we continue our study of the LFSR, how to introduce non-linearity in the system and we look
at some examples of cryptographic properties of Boolean functions.

Figure 8.1: An n- bit LFSR

8.1 Characteristic polynomial and Minimal polynomial

Definition 8.1 For the n-bit LFSR as in the figure above the polynomial : c(x) = xn+cn−1x
n−1+...+c1x+1

is called the connection polynomial of the LFSR.

Definition 8.2 Let ~s = (s0, s1, s2, ...) be an LFSR sequence. Then the shift operator L is defined as :
L(~s) := (s1, s2, ...).

Using composition of the shift operators we can talk about powers L,L2, L3... and can consider polynomials
of shift operators.

Definition 8.3 A polynomial f such that f(L)~s = ~0 is called a characteristic polynomial of the sequence ~s.

Definition 8.4 The characteristic polynomial ~s of minimum degree is called the minimal polynomial of ~s.

Now we have the following propositions.

Proposition 8.5 If ~s is a sequence over a finite field F, the connection polynomial c(x) of the LFSR is a
minimal polynomial of ~s if c(x) is irreducible.

We note that

• If ~s has period r, then xr − 1 is a characteristic polynomial of ~s.

Definition 8.6 The period of a polynomial g(x) ∈ Fp[x] is defined as the minimum integer e such that
g(x)|xe − 1.

8-1

8-2 Lecture 8:

Proposition 8.7 If m(x) is the minimal polynomial of a sequence ~s, then period(m(x)) = period(~s).

• From 8.5 and 8.7, if we want to maximize the period, then period(~s) = pn − 1.

• Hence from 8.7 we have period(m(x)) = period(~s).

• So, from 8.5, period(c(x)) = pn−1 if the sequence is produced from an LFSR of connection polynomial
c(x).

• Definition 8.6 implies that the minimum integer e such that c(x)|xe−1 is e = pn−1. Such a polynomial
is called a primitive polynomial.

From the above discussion, to choose a connection we need to choose a primitive polynomial.

8.2 Problem of LFSR

LFSR is safe for ciphertext only attacks. Suppose we have an LFSR sequence : s0, s1, s2, We XOR with
the message bits to get the ciphertext. Suppose we get a portion of the text. Then we have the following
system of equations.

sn = a0s0 + a1s1 + ... + an−1sn−1

sn+1 = a0s1 + a1s2 + ... + an−1sn

................

s2n−1 = a0sn−1 + a1sn + ... + an−1s2n−2

Treating the ai’s as unknowns, we get a system of n equations in n unknowns given by :


sn

sn+1

.

.

.
s2n−1

 =


s0 s1 . . . sn−1
s1 s2 . . . sn
.
.
.

sn−1 sn−2 . . . s2n−2




a0
a1
.
.
.

an−1


Since the n × n matrix on the R.H.S is symmetric, it is invertible. So the ai’s, i.e the connections are
completely determined which is the attacker’s advantage.

Definition 8.8 The Linear Complexity of a sequence is the minimum length LFSR that produces the se-
quence.

If a sequence has length n, then its linear complexity ≤ n
2 .

From the above discussion, purely linear feedback is not good. Hence we introduce non-linearity in the
system. We shall formally define non-linearity of a Boolean function in the next section.

Lecture 8: 8-3

8.2.1 Ways to introduce non-linearity

There are three models to introduce non-linearity in the system.

• Non-linear feedback model.

• Non-linear combiner model.

• Non-linear filter generator model.

1. Non-linear feedback :- We make the feedback a non-linear Boolean function.

2. Non-linear combiner :- In the following diagram f : {0, 1}m → {0, 1} is a non-linear combining function.

Figure 8.2: Non-linear combiner function

3. Non-linear filter generator :- This is described in the following figure. As before f : {0, 1}m → {0, 1} is
a non-linear Boolean function.

Figure 8.3: Non-linear combiner function

8-4 Lecture 8:

8.3 Nonlinearity

Definition 8.9 A Boolean function f : {0, 1}n → {0, 1} is called linear iff ∃a1, a2, ..., an ∈ {0, 1} such that
f(x1, x2, ..., xn) = a1x1 ⊕ a2x2 ⊕ ..⊕ anxn.

Definition 8.10 A Boolean function f : {0, 1}n → {0, 1} is called affine iff ∃a0, a1, ..., an ∈ {0, 1} such that
f(x1, x2, ..., xn) = a0 ⊕ a1x1 ⊕ a2x2 ⊕ ..⊕ anxn.

So if a0 = 1, then f is the complement of a Boolean function.

Definition 8.11 A Boolean function is said to be non-linear if it is not affine.

The total number of n-variable Boolean functions is 22
n

. From the above definition, the number of affine
functions is 2n+1. Hence the number of non-linear Boolean functions is 22

n − 2n+1.

Definition 8.12 The distance between two n-variable Boolean functions f1 and f2, denoted by d(f1, f2),
is defined as the number of the Boolean vectors ~x such that f1(~x) 6= f2(~x).Equivalently it is defined as the
number of 1’s in f1 ⊕ f2.

Clearly d as defined above is a metric.

• Let An denote the set of all n-variable affine Boolean functions.

Definition 8.13 The non-linearity of an n-variable Boolean function f is defined as

nl(f) := min
g∈An

d(f, g)

8.4 Cryptographic properties of Boolean functions

Some of the cryptographic properties of Boolean functions are listed below.

• Non-linearity

• Balancedness

• Correlation Immunity

• Algebraic Immunity

• ... etc. ...

