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1 Limitations of Perfect Secrecy

We show that one of the aforementioned limitations of the one-time pad encryption scheme
is inherent. We prove that any prefectly-secret encryption scheme must have a key space
that is at least as large as the message space.

Theorem 1.1 Let (Gen, Enc, Dec) be a perfectly-secure encryption scheme over a message
spaceM, and let K be the key space as determined by Gen. Then |K| ≥ |M|

Proof. We show that if |K| ≥ |M| then the scheme is not perfectly secret. Let c be a
ciphertext that corresponds to a possible encryption of m. Consider the set M(c) of all
possible messages that correspond to c; that is

By assumption, |M(c)| ≤ |K| < |M|

∃m′ ∈M such that m′ /∈M(c)

This implies,

Pr[M = m′|C = c] = 0 < Pr[M = m′]

Pr[M = m′|C = c] 6= Pr[M = m′]

This implies the perfect secrecy. 2

Lemma 1.2 For meaningful encryption scheme, |C| ≥ |M|.

2 Shannon’s Theorem

Theorem 2.1 Let (Gen, Enc, Dec) be an encryption scheme over a message space M for
which |M| = |K| = |C|. This scheme is perfectly secret if and only if:

1. Every key k ∈ K is chosen with equal probability 1/|K| by algorithm Gen.

2. For every m ∈M and every c ∈ C, there exists a single key k ∈ K such that Enck(m)
outputs c.

Proof. Let (Gen, Enc, Dec) be an encryption scheme over M where |M| = |K| = |C|.

(I) Perfect secrecy ⇒ Condition 1 and 2 :
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We know by Theorem 1.1, that for every m ∈ M and c ∈ C, there exists atleastone key
k ∈ K such that Enck(m) = c. For every fixed m, consider now the set,

Enck(m) = {c ∈ C : ∃k ∈ K such that Enck(m) = c}

By the above,
|Enck(m)| ≥ |C| (1)

(because for every c ∈ C there exists a k ∈ K such that Enck(m) = c).

Since, Enck(m) ∈ C we trivially have,

|Enck(m)| ≤ |C| (2)

From 1 and 2, we conclude that,

|Enck(m)| = |C| (3)

Since |K| = |C|, it follows that | Enck(m)| = |K|. This implies that for every m and c, there
do not exists distinct keys k1, k2 ∈ K with Enck1(m) = Enck2(m) = c.
This implies that Condition 2 must be true.

Now, for every k ∈ K, Pr[K = k] = 1/|K|. Let n = K and M = {m1, ...,mn} and fix
ciphertext c. By definition of perfect secrecy, we have

Pr[M = mi] = Pr[M = mi | C = c]

=
Pr[M = mi] · Pr[C = ci | M = mi]

Pr[C = ci]

=
Pr[M = mi] · Pr[K = ki]

Pr[C = ci]

From the above, it follows that for every i,

Pr[K = ki] = Pr[C = c] (4)

where ki maps mi to c.
Similarly we can show that,

Pr[K = kj ] = Pr[C = c] (5)

where kj maps mj to c.
From 4 and 5, we get Pr[K = ki] = Pr[K = kj ]. Similarly,

Pr[K = k1] = Pr[K = k2] = ... = Pr[K = kn] = 1/|K| (6)

This implies that condition 1 is true.
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(II) Condition 1 and 2 ⇒ Perfect secrecy :
Lets consider key space set contains n elements and index each element by 1, 2, 3, ..., n.

Pr[C = ci | M = mi] = Pr[K = ki] where ki maps mi to ci (from Condition 2)

= 1/|K| (from Condition 1)

= Pr[C = cj | M = mi], j 6= i

This implies perfect secrecy.
Hence, proved in both directions. 2

3 Example of Perfectly Secure Encryption Scheme

3.1 Vernam Cipher(1917)

Vernam Cipher is also called One-Time Pad(OTP), because each message must be encrypted
with a different key. The one-time pad encryption scheme is defined as follows:

1. Fix an integer l > 0. Then the message space M, key space K, and ciphertext space
C are all equal to {0, 1}l.

2. The key-generation algorithm Gen works by choosing a string from ‖ = {0, 1}l accord-
ing to uniform distribution.

3. Encryption Enc works as follows: given a key k ∈ {0, 1}l and a message m ∈ {0, 1}l,
outputs c := k ⊕m.

4. Decryption Dec works as follows: given a key k ∈ {0, 1}l and a ciphertext c ∈ {0, 1}l,
outputs m := k ⊕ c.

Let mi, ci and ki be the ith bit of the message, ciphertext and key respectively.
∀b ∈ {0, 1} and ∀b′ ∈ {0, 1},

Pr[mi = b | ci = b′] =
Pr[mi = b] · Pr[ci = b′|mi = b]

Pr[ci = b′]

=
Pr[mi = b] · Pr[ci = b′|mi = b]∑
j Pr[mi = b] · Pr[ci = b′|mi = b]

=
Pr[mi = b] · Pr[ci = b′|mi = b]

Pr[mi = 0] · Pr[ci = b′|mi = 0] + Pr[mi = 1] · Pr[ci = b′|mi = 1]

=
Pr[mi = b] · Pr[ki = b⊕ b′]

Pr[mi = 0] · Pr[ki = b′] + Pr[mi = 1] · Pr[ki = b′ ⊕ 1]

=
Pr[mi = b] · 1/2

Pr[mi = 0] · 1/2 + Pr[mi = 1] · 1/2

= Pr[mi = b]

This implies perfect secrecy.
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