Cryptology 25th August, 2015

Lecture 6: Limitations of Perfect Secrecy; Shannon's Theorem

Instructor: Dr. Goutam Paul Scribe: Abhishek Singh

1 Limitations of Perfect Secrecy

We show that one of the aforementioned limitations of the one-time pad encryption scheme is *inherent*. We prove that any prefectly-secret encryption scheme must have a key space that is at least as large as the message space.

Theorem 1.1 Let (Gen, Enc, Dec) be a perfectly-secure encryption scheme over a message space \mathcal{M} , and let \mathcal{K} be the key space as determined by Gen. Then $|\mathcal{K}| > |\mathcal{M}|$

Proof. We show that if $|\mathcal{K}| \geq |\mathcal{M}|$ then the scheme is not perfectly secret. Let c be a ciphertext that corresponds to a possible encryption of m. Consider the set $\mathcal{M}(c)$ of all possible messages that correspond to c; that is

By assumption, $|\mathcal{M}(c)| \leq |\mathcal{K}| < |\mathcal{M}|$

$$\exists m' \in \mathcal{M} \text{ such that } m' \notin \mathcal{M}(c)$$

This implies,

$$\Pr[M = m' | C = c] = 0 < \Pr[M = m']$$

 $\Pr[M = m' | C = c] \neq \Pr[M = m']$

This implies the perfect secrecy.

Lemma 1.2 For meaningful encryption scheme, $|C| \geq |\mathcal{M}|$.

2 Shannon's Theorem

Theorem 2.1 Let (Gen, Enc, Dec) be an encryption scheme over a message space \mathcal{M} for which $|\mathcal{M}| = |\mathcal{K}| = |\mathcal{C}|$. This scheme is perfectly secret if and only if:

- 1. Every key $k \in \mathcal{K}$ is chosen with equal probability $1/|\mathcal{K}|$ by algorithm Gen.
- 2. For every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$, there exists a single key $k \in \mathcal{K}$ such that $\mathsf{Enc}_k(m)$ outputs c.

Proof. Let (Gen, Enc, Dec) be an encryption scheme over \mathcal{M} where $|\mathcal{M}| = |\mathcal{C}|$.

(I) Perfect secrecy \Rightarrow Condition 1 and 2:

We know by Theorem 1.1, that for every $m \in \mathcal{M}$ and $c \in \mathcal{C}$, there exists *atleastone* key $k \in \mathcal{K}$ such that $\mathsf{Enc}_k(m) = c$. For every fixed m, consider now the set,

$$Enc_k(m) = \{c \in \mathcal{C} : \exists k \in \mathcal{K} \text{ such that } Enc_k(m) = c\}$$

By the above,

$$|Enc_k(m)| \ge |\mathcal{C}| \tag{1}$$

(because for every $c \in \mathcal{C}$ there exists a $k \in \mathcal{K}$ such that $\mathsf{Enc}_k(m) = c$).

Since, $\operatorname{Enc}_k(m) \in \mathcal{C}$ we trivially have,

$$|Enc_k(m)| \le |\mathcal{C}| \tag{2}$$

From 1 and 2, we conclude that,

$$|Enc_k(m)| = |\mathcal{C}| \tag{3}$$

Since $|\mathcal{K}| = |\mathcal{C}|$, it follows that $|\operatorname{Enc}_k(m)| = |\mathcal{K}|$. This implies that for every m and c, there do not exists distinct keys $k_1, k_2 \in \mathcal{K}$ with $\operatorname{Enc}_{k_1}(m) = \operatorname{Enc}_{k_2}(m) = c$. This implies that Condition 2 must be true.

Now, for every $k \in \mathcal{K}$, $\Pr[\mathcal{K} = k] = 1/|\mathcal{K}|$. Let $n = \mathcal{K}$ and $\mathcal{M} = \{m_1, ..., m_n\}$ and fix ciphertext c. By definition of perfect secrecy, we have

$$Pr[M = m_i] = Pr[M = m_i \mid C = c]$$

$$= \frac{Pr[M = m_i] \cdot Pr[C = c_i \mid M = m_i]}{Pr[C = c_i]}$$

$$= \frac{Pr[M = m_i] \cdot Pr[K = k_i]}{Pr[C = c_i]}$$

From the above, it follows that for every i,

$$\Pr[K = k_i] = \Pr[C = c] \tag{4}$$

where k_i maps m_i to c.

Similarly we can show that,

$$\Pr[K = k_j] = \Pr[C = c] \tag{5}$$

where k_j maps m_j to c.

From 4 and 5, we get $\Pr[\mathcal{K} = k_i] = \Pr[\mathcal{K} = k_i]$. Similarly,

$$\Pr[K = k_1] = \Pr[K = k_2] = \dots = \Pr[K = k_n] = 1/|\mathcal{K}|$$
 (6)

This implies that condition 1 is true.

(II) Condition 1 and $2 \Rightarrow \text{Perfect secrecy}$:

Lets consider key space set contains n elements and index each element by 1, 2, 3, ..., n.

$$\Pr[C = c_i \mid M = m_i] = \Pr[K = k_i] \text{ where } k_i \text{ maps } m_i \text{ to } c_i \text{ (from Condition 2)}$$

= $1/|\mathcal{K}| \text{ (from Condition 1)}$
= $\Pr[C = c_i \mid M = m_i], j \neq i$

This implies perfect secrecy.

Hence, proved in both directions.

3 Example of Perfectly Secure Encryption Scheme

3.1 Vernam Cipher (1917)

Vernam Cipher is also called One-Time Pad(OTP), because each message must be encrypted with a different key. The one-time pad encryption scheme is defined as follows:

- 1. Fix an integer l > 0. Then the message space \mathcal{M} , key space \mathcal{K} , and ciphertext space \mathcal{C} are all equal to $\{0,1\}^l$.
- 2. The key-generation algorithm Gen works by choosing a string from $\|=\{0,1\}^l$ according to uniform distribution.
- 3. Encryption Enc works as follows: given a key $k \in \{0,1\}^l$ and a message $m \in \{0,1\}^l$, outputs $c := k \oplus m$.
- 4. Decryption Dec works as follows: given a key $k \in \{0,1\}^l$ and a ciphertext $c \in \{0,1\}^l$, outputs $m := k \oplus c$.

Let m_i, c_i and k_i be the i^{th} bit of the message, ciphertext and key respectively. $\forall b \in \{0, 1\}$ and $\forall b' \in \{0, 1\}$,

$$\begin{split} \Pr[m_i = b \mid c_i = b'] &= \frac{\Pr[m_i = b] \cdot \Pr[c_i = b' | m_i = b]}{\Pr[c_i = b']} \\ &= \frac{\Pr[m_i = b] \cdot \Pr[c_i = b' | m_i = b]}{\sum_j \Pr[m_i = b] \cdot \Pr[c_i = b' | m_i = b]} \\ &= \frac{\Pr[m_i = b] \cdot \Pr[c_i = b' | m_i = b]}{\Pr[m_i = 0] \cdot \Pr[c_i = b' | m_i = 1] \cdot \Pr[c_i = b' | m_i = 1]} \\ &= \frac{\Pr[m_i = b] \cdot \Pr[k_i = b \oplus b']}{\Pr[m_i = 0] \cdot \Pr[k_i = b'] + \Pr[m_i = 1] \cdot \Pr[k_i = b' \oplus 1]} \\ &= \frac{\Pr[m_i = b] \cdot 1/2}{\Pr[m_i = 0] \cdot 1/2 + \Pr[m_i = 1] \cdot 1/2} \\ &= \Pr[m_i = b] \end{split}$$

This implies perfect secrecy.