
Cryptology 18th August 2015

Lecture 4: Perfect Secrecy: Several Equivalent Formulations

Instructor: Goutam Paul Scribe: Arka Rai Choudhuri

1 Notation

We shall be using the following notation for this lecture,

M −The set of all possible messages

C −The set of all possible ciphertexts

K −The set of all possible keys

m ∈M −A specific message over M
c ∈ C −A specific message over C
k ∈ K −A specific message over K
M,K,C −Random variables over M,K and C respectively

enck(m) = c −Encryption of m with the key k to give ciphertext c

$←− −chosen uniformly at random

2 Perfect Secrecy

Definition 2.1 An encryption scheme (Enc, Dec) over a message space M is perfectly
secure if for every probability distribution over M, every message m ∈ M and every
ciphertext c ∈ C for which Pr[C = c] > 0:

Pr[M = m | C = c] = Pr[M = m].

The following theorem gives an equivalent formulation of 2.1.

Theorem 2.2 An encryption scheme (Enc, Dec) over a message space M is perfectly
secure if and only if for every probability distribution over M, every message m ∈M and
every ciphertext c ∈ C:

Pr[C = c | M = m] = Pr[C = c].

Proof. Firstly, suppose for every message m ∈M and every ciphertext c ∈ C,

Pr[C = c | M = m] = Pr[C = c] (1)

By Bayes’ theorem,

Pr[C = c | M = m] =
Pr[M = m | C = c] · Pr[C = c]

Pr[M = m]
(2)
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From (3) and (2), we get

Pr[M = m | C = c] ·���
���Pr[C = c]

Pr[M = m]
= ��

���
�

Pr[C = c]

∴ Pr[M = m | C = c] = Pr[M = m]

For the other way, we assume perfect secrecy, and hence, for every message m ∈ M and
every ciphertext c ∈ C,

Pr[M = m | C = c] = Pr[M = m] (3)

again, by Bayes’ theorem, and similar to the above proof, we get

Pr[C = c | M = m] ·(((((
(

Pr[M = m]

Pr[C = c]
= (((

(((Pr[M = m]

∴ Pr[C = c | M = m] = Pr[C = c]

Hence, proved in both directions. �

3 Perfect Indistinguishability

We fix a message m and vary the key over the key space K, to get get a distribution of
ciphertexts. This is represented either as encK(m) or Dm.

Definition 3.1 An encryption scheme (Enc, Dec) over a message space M is said to have
the property of perfect indistinguishability if ∀ m0 6= m1 ∈ M, Dm0 and Dm1 are
identical.

This is just another way of saying that the ciphertext contains no information about the
plaintext.

Theorem 3.2 An encryption scheme (Enc, Dec) over a message space M is perfectly
secure if and only if it has perfect indistinguishability.

Proof. (I) Perfect secrecy ⇒ perfect indistinguishability
We know by Theorem 2.2,

∀ m ∈M, c ∈ C Pr[C = c | M = m] = Pr[C = c]

The above equation implies,

Pr[C = c | M = m0] = Pr[C = c] (4)

Pr[C = c | M = m1] = Pr[C = c] (5)

From the above two equations, we get

Pr[C = c | M = m0] = Pr[C = c | M = m1]
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Since the choice of m0,m1 were arbitrary, this trivially implies that Dm0 and Dm1 are in-
distinguishabile. This implies perfect indistinguishability.
(II) Perfect indistinguishability ⇒ perfect secrecy
Fix m0 ∈ M and c ∈ C. Let Pr[C = c | M = m0] = p. Since Pr[C = c | M = m] = Pr[C =
c | M = m0] = p for all m because of perfect indistinguishability, we have

Pr[C = c] =
∑
m∈M

Pr[M = m]Pr[C = c | M = m]

=
∑
m∈M

p · Pr[M = m]

= p ·
∑
m∈M

Pr[M = m]

= p

= Pr[C = c | M = m0]

Since m0 was arbitrary, we have shown Pr[C = c] = Pr[C = c | M = m] for all c ∈ C and
m ∈M. ∴ from Theorem 2.2, this implies perfect secrecy. �

4 Adverserial indistinguishability

We define a game GdistA,enc as mentioned in [?].

Eavesdropping indistinguishability experiment (game) GdistA,enc

1. The adversary A outputs a pair of messages m0,m1 ∈ M.

2. A random key k is generated at random from K, and a random bit b
$←− {0, 1} is

chose. (These are chose by the challenger entity that is running the experiment with
A.) Then, a ciphertext enck(mb) is computed and given to A.

3. A outputs a bit b′ ∈ {0, 1}.

4. The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise. We write
GdistA,enc = 1 if the output is 1 and in this case we say A succeeded.

One should think of A as trying to guess the value of b that is chosen in the experiment,
and A succeeds when its guess b′ is correct.
It should be noted that the key is chosen and does not depend on the messages it receives
from the attacker A.
Probability that the adversary A win,

= Pr[GdistA,enc = 1]

= Pr[b = b′]

Definition 4.1 An encryption scheme (Enc, Dec) over a message space M is said to have
adversarial indistinguishability if

Pr[GdistA,enc = 1] =
1

2
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Theorem 4.2 An encryption scheme (Enc, Dec) over a message space M has perfect
secrecy if and only if it has adversarial indistinguishability.

Proof. (I) Perfect secrecy ⇒ adversarial indistinguishability
Note: we make the assumption that the adversary will always guess the same for the same
ciphertext, i.e. the adversary is deterministic.

Pr[GdistA,enc = 1] = Pr[b = b′]

= Pr[b′ = b | M = m0]Pr[M = m0] + Pr[b′ = b | M = m1]Pr[M = m1]

Essentially what the adversary does is try to partition the ciphertext space C into two
subsets C0, C1 such that C = C0 ∪ C1 and C0 ∩ C1 = φ. If the attacker gets c ∈ C0, it outputs
0, else if c ∈ C1 it outputs 1.

∴ Pr[b′ = b | M = m0]Pr[M = m0] + Pr[b′ = b | M = m1]Pr[M = m1]

= Pr[c ∈ C0] ·
1

2
+ Pr[c ∈ C0] ·

1

2

=
1

2
(Pr[c ∈ C0] + Pr[c ∈ C0])

=
1

2

From the first to the second, the 1
2 comes from the fact that Pr[M = m0] = Pr[M = m1] = 1

2 .
The last equality follows from the fact that C0 and C1 are mutually exclusive and exhaustive.
Hence perfect secrecy implies adversarial indistinguishability.
(II) Adverserial indistinguishability ⇒ perfect secrecy
We prove the contrapositive of the above statement.
Not perfect secrecy ⇒ Not adverserial indistinguishability
By not perfect secrecy, we mean

∃ m′
0,m

′
1 ∈M, c′ ∈ C, such that

Pr[C = c′|M = m′
0] 6= Pr[C = c′|M = m′

1]

Pr[GdistA,enc = 1] = Pr[b = b′] = Pr[b = b′ |M = m′
0]Pr[M = m′

0]+Pr[b = b′ |M = m′
1]Pr[M = m′

1]
(6)

=
1

2

(
Pr[b = b′ | M = m′

0] + Pr[b = b′ | M = m′
1]
)

(7)

For positive results, we don’t care about what the adversary does, but for the negative
result we show that there exists at least one adversary for which the probability of success
is away from half.
Since there will exist at least one pair m′

0 and m′
1, that adversary will pick these to work

with and hence we can write the above equations.
Construction of adversary
A chooses m′

0,m
′
1 and gives it to the challenger. If it receives C = c′, output b′ = 0 else
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output b′
$←− {0, 1}

The randomness is to ensure that we can separate out the case when C = c′.

Pr[b = b′ | M = m′
0] = Pr[C = c′ |M = m′

0]Pr[b = b′ | M = m′
0, C = c′]

+Pr[C 6= c′ |M = m′
0]Pr[b = b′ | M = m′

0, C 6= c′]

= Pr[C = c′ |M = m′
0] · 1 + Pr[C 6= c′ |M = m′

0] ·
1

2

Pr[b = b′ | M = m′
0, C = c′] = 1 since b = 0, and also b′ = 0 because C = c′ (by definition).

Substituting into (7), we get

=
1

2

(
Pr[C = c′ | M = m′

0] +
1

2
· Pr[C 6= c′ | M = m′

0] + Pr[b = b′ | M = m′
1]

)
(8)

Now,

Pr[b = b | M = m′
1] = Pr[C = c′ |M = m′

1]Pr[b = b′ | M = m′
1, C = c′]

+Pr[C 6= c′ |M = m′
1]Pr[b = b′ | M = m′

1, C 6= c′]

= Pr[C = c′ |M = m′
1] · 0 + Pr[C 6= c′ |M = m′

1] ·
1

2

The reasoning follows similar to the equation done earlier. We substitute this into (8).

=
1

2

(
Pr[C = c′ | M = m′

0] +
1

2
· Pr[C 6= c′ | M = m′

0] +
1

2
Pr[C 6= c′ | M = m′

1]

)
=

1

2

(
Pr[C = c′ | M = m′

0] +
1

2
· (1− Pr[C = c′ | M = m′

0]) +
1

2
Pr[C 6= c′ | M = m′

1]

)
=

1

4
+

1

4

(
Pr[C = c′ | M = m′

0] + Pr[C 6= c′ | M = m′
1]
)

6= 1

4
+

1

4

(
Pr[C = c′ | M = m′

1] + Pr[C 6= c′ | M = m′
1]
)

=
1

4
+

1

4
=

1

2

The inequality comes from the fact of not perfect secrecy that we have assumed.

∴ Pr[GdistA,enc = 1] 6= 1

2

And hence, it does not have adversarial indistinguishability.
�
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